Plant Physiology and Ecology 植物生理生态学

FREDERIC EDWARD CLEMENTS

Plant Physiology and Ecology

植物生理生态学

FREDERIC EDWARD CLEMENTS

This edition first published in 1907 by Henry Holt and Company

This book reproduces the text of the original edition. The content and language reflect the beliefs, practices and terminology of their time, and have not been updated.

内容简介

本书是美国著名植物生态学家克莱门茨的经典著作。本书首次将植物作为一个个体,探讨了植物的形态、性质与功能,以及生理生态学的基本内容,包括植物的应激反应,栖息地、水分、光照、温度等外部条件的变化对植物的影响等。除理论知识外,还包含大量实验操作。本书适合植物学、生态学及相关交叉学科的师生和热爱植物、亲近自然的大众阅读。

图书在版编目(CIP)数据

植物生理生态学 = Plant Physiology and Ecology: 英文 / (美) 弗雷德里克·克莱门茨著 . -- 北京: 高等教育出版社, 2019.6

ISBN 978-7-04-052041-5

I. ①植… II. ①弗… III. ①植物生理学-英文 ②植物生态学-英文 IV. ①Q94

中国版本图书馆 CIP 数据核字 (2019) 第 094701 号

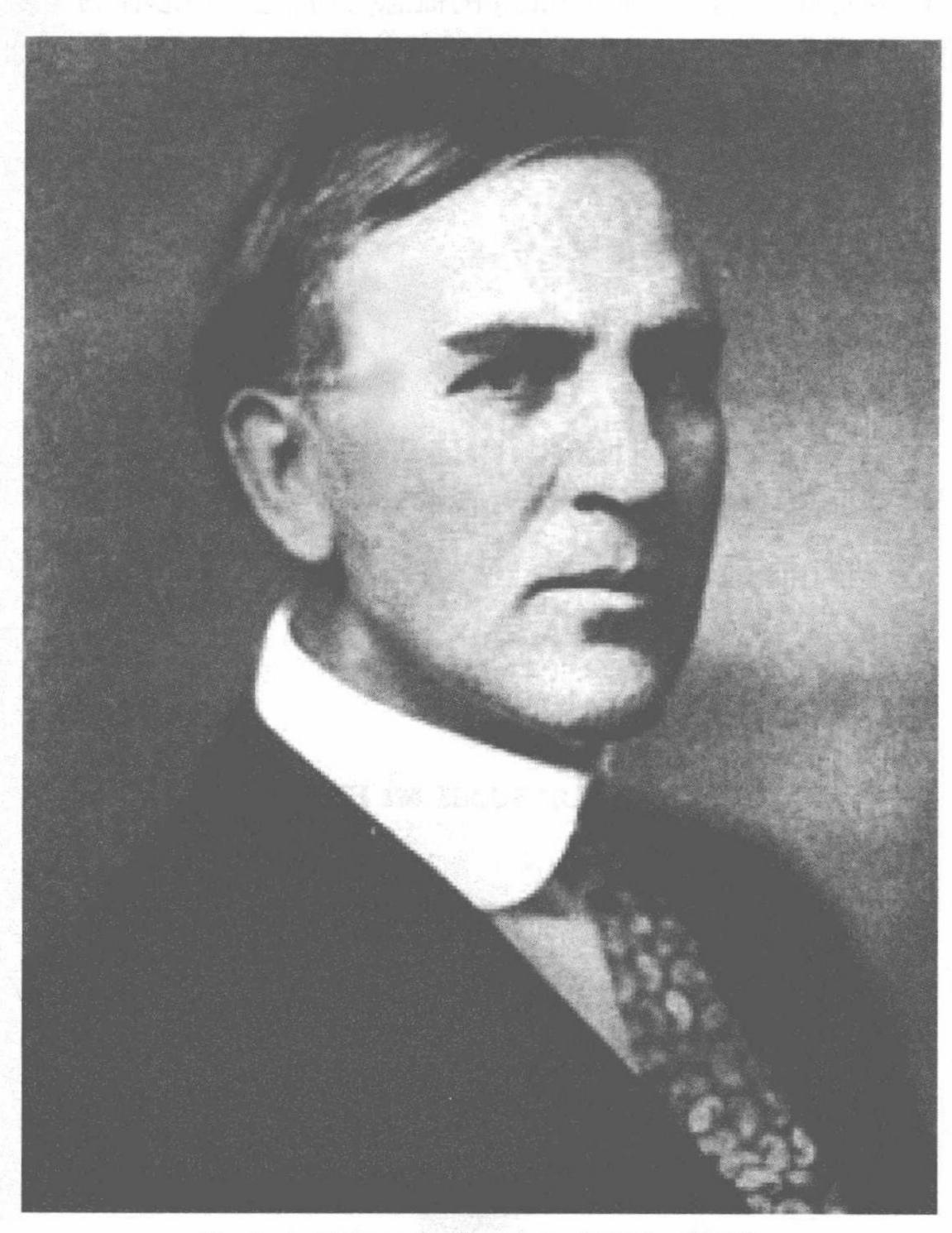
策划编辑 殷 鸽 责任编辑 殷 鸽 封面设计 杨立新 责任印制 赵义民

印 北京中科印刷有限公司 http://www.hepmall.com 本 787 mm×1092 mm 1/16 http://www.hepmall.cn

印 张 21

咨询电话 400-810-0598 定 价 198元

本书如有缺页、倒页、脱页等质量问题, 请到所购图书销售部门联系调换


版权所有 侵权必究 物 料 号 52041-00 Open and Read Find Something Valuable

HEP World's Classics

There is a Chinese saying: "It is beneficial to open any book." It is even more fruitful to open and read classic books. The world is keeping on changing, but really fundamental and essential things stay the same since there is nothing new under the sun. Great ideas have been discovered and re-discovered, and they should be learnt and re-learnt. Classic books are our inheritance from all the previous generations and contain the best of knowledge and wisdom of all the people before us. They are timeless and universal. We cannot travel back in time, but we can converse with the originators of current theories through reading their books. Classic books have withstood the test of time. They are reliable and contain a wealth of original ideas. More importantly, they are also books which have not finished what they wanted or hoped to say. Consequently, they contain unearthed treasures and hidden seeds of new theories, which are waiting to be discovered. As it is often said: history is today. Proper understanding of the past work of giants is necessary to carry out properly the current and future researches and to make them to be a part of the history of science and mathematics. Reading classic books is not easy, but it is rewarding. Some modern interpretations and beautiful reformulations of the classics often miss the subtle and crucial points. Reading classics is also more than only accumulating knowledge, and the reader can learn from masters on how they asked questions, how they struggled to come up with new notions and theories to overcome problems, and answers to questions. Above all, probably the best reason to open classic books is the curiosity: what did people know, how did they express and communicate them, why did they do what they did? It can simply be fun!

This series of classic books by Higher Education Press contains a selection of best classic books in natural history, mathematics, physics, chemistry, information technology, geography, etc. from the past two thousand years. They contain masterpieces by the great people such Archimedes, Newton, Lavoisier, Dalton, Gauss, Darwin, Maxwell, and hence give a panorama of science and mathematics. They have been typeset in modern fonts for easier and more enjoyable reading. To help the reader understand difficult classics better, some volumes contain introductions and commentaries by experts. Though each classic book can stand in its own, reading them together will help the reader gain a bigger perspective of science and mathematics and understand better interconnection between seemingly unrelated topics and subjects.

Higher Education Press has been the largest publisher in China. Besides the long tradition of providing high quality books for proper education and training of university and graduate students, she has also set out to provide research monographs and references books to people at all levels around the world. Higher Education Press considers it her duty to keep the world science and mathematics community informed of what has been achieved in their subjects in easy and accessible formats. This series of classic books is an integral part of this effort.

Frederic Edward Clements (1874—1945)

弗雷德里克·爱德华·克莱门茨 (Frederic Edward Clements, 1874—1945), 美国著名植物生态学家, 机体论学派代表人物。克莱门茨 1898 年取得博士学位, 1917—1941 年在华盛顿卡耐基研究所从事生态学研究。最重要的贡献是提出植物群落演替学说, 以及植物群落分布气候顶极或单元顶极理论。他还首次提出了生物群区 (biome) 的概念, 并将这一概念作为生物群体的基本单位。著有《植物的演替》(1916)、《植物演替和指示植物》(1928)、《植物生态学》(1925)等。

PLANT PHYSIOLOGY

AND

ECOLOGY

BY

FREDERIC EDWARD CLEMENTS, Ph.D.

Professor of Botany in the University of Minnesota

WITH 125 ILLUSTRATIONS

NEW YORK
HENRY HOLT AND COMPANY
1907

Copyright, 1907, ${\rm BY}$ HENRY HOLT AND COMPANY

ROBERT DRUMMOND COMPANY, PRINTERS, NEW YORK

PREFACE.

The point of view and the methods of study first advanced in "Research Methods in Ecology" have proved so satisfactory in teaching as to make it desirable to embody them in a text-book. The present text has been based largely upon "Research Methods," though most of the matter is new or rewritten. The manner of treatment is essentially the same, but the subject-matter has been rearranged and broken up into a larger number of chapters. The plant is first considered as an individual, with respect to factor, function, and form, and then as a member of a plant group or formation.

The reasons for regarding ecology and physiology as essentially the same have been given elsewhere, and need not be repeated here. An endeavor has been made to give the various parts of this vast field their proper importance. Since ecology and physiology are merged, it is manifestly impossible to give to either what would be regarded as a complete treatment by a specialist in either line. No attempt has been made to touch all the points in each, but it is thought that nothing really fundamental has been omitted.

The book is intended for use with classes in second-year botany in college and university. In manuscript form, it has been in such use for two years with good results. Although the amount of laboratory and field work is large, it is possible to accomplish all of it in a course requiring 6–8 hours of laboratory time each week.

This can be done only by careful planning on the part of both instructor and student, and for this reason the following suggestions are offered as aids.

The instructor will find it imperative to plan in advance for the experiments for the whole year, in order that plants may be ready as needed. Seeds and fruits

ii PREFACE.

for the study of migration should be collected in the fall. Shade tents, water-content series, and competition cultures must also be prepared early in the year. Types of hydrophytes, xerophytes, etc., should be grown in the plant-house in so far as possible. Students should be instructed to make duplicate plantings of all plants to be used in order to make sure of an adequate supply at all times. It has also been found desirable to teach the students the use of the paraffin method of embedding tissues, thus saving much time and securing better results. The work on adaptation to water and light is best carried on in the form of joint experiments, in which each student is assigned a definite part. In the experiments much use has been made of the common sunflower. This is on account of the ease with which it may be secured and grown, but when a larger choice is possible other plants may often be substituted to advantage.

In just as far as possible, the work of the student should be among plants out-of-doors. This is imperative in the chapters on vegetation, and is very desirable in all cases where it is feasible, even in the study of plant functions. For vegetation work, the knowledge of the more important genera and species of the several formations is indispensable. If the student does not already have this knowledge, the names should be furnished him by any desirable method, without taking the time necessary for identification.

A bibilography has not seemed necessary and has not been given. A fairly full list of the more important works is found in "Research Methods." Apart from the latter, Pfeffer's "Pflanzenphysiologie," MacDougal's "Text-book of Plant Physiology," Sach's "Text-book of Botany," Vines' "Lectures on the Physiology of Plants," and Kerner's "Pflanzenleben" have been frequently consulted in the preparation of the text.

Grateful acknowledgment is made of the kindness of Dr. C. E. Bessey, Dr. D. T. MacDougal, and Dr. Edith Clements in reading and criticizing the text. The author is also indebted to Dr. Edith Clements for many drawings, and for the use of cuts from "The Relation of Leaf Structure to Physical Factors," and to Mr. R. J. Pool and Mr. A. W. Sampson for the loan of several photographs.

FREDERIC EDWARD CLEMENTS.

THE UNIVERSITY OF NEBRASKA, March 1907.

CONTENTS

CHAPTER I

STIMULUS AND RESPONSE

Page					
1. Fundamental Relations $\cdots 1$					
2. The Nature of Stimuli · · · · · · · · · · · · · · · · · · ·					
3. The Kinds of Stimuli · · · · · · · · · · · · · · · · · · ·					
4. The Nature of Response · · · · · · · · · · · · · · · · · · ·					
5. Adjustment and Adaptation · · · · · · · · · · · · · 4					
6. Kinds of Adjustment · · · · · · · · · · · · · · · · · · ·					
7. Normal and Abnormal Adjustment · · · · · · · · · · · · 5					
CHAPTER II					
THE WATER OF THE HABITAT					
8. Relation of the Plant to Water · · · · · · · · · · · · · · · · · · ·					
9. The Nature of Water Stimuli · · · · · · · · · · · · · · · · · · ·					
10. Water Content · · · · · · · · · · · · · · · · · · ·					
11. Influence of other Factors upon Water Content · · · · · · · 9					
12. Available and Non-available Water Content · · · · · · · · 9					
13. Soil Samples					
14. Computation of Water Content· · · · · · · · · · · · · · · · · · ·					
15. Time of Water Content Readings · · · · · · · · · · · · · · · · · · ·					

	PA	GE
16.	$Location\ of\ Readings\ \cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots$	12
17.	$\mathbf{Depth}\ \mathbf{of}\ \mathbf{Samples}\ \cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots$	12
	Experiment 1. Measurement of Water Content $\cdots \cdots \cdots \cdots$	13
18.	The Determination of Available Water · · · · · · · · · · · · · · · · · · ·	13
19.	$Chresard\ of\ Habitats\ \cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots$	13
	$\textit{Experiment 2. Determination of Available Water} \cdot \cdot$	14
	Modifying Factors	
20.	Influence of Soil upon Water Content · · · · · · · · · · · · · · · · · · ·	14
	Origin and Structure · · · · · · · · · · · · · · · · · · ·	
	Water Capacity · · · · · · · · · · · · · · · · · · ·	
	Chemical Nature of Soils · · · · · · · · · · · · · · · · · · ·	
24.	Air Content · · · · · · · · · · · · · · · · · · ·	18
25.	Determination of Soil Properties · · · · · · · · · · · · · · · · · · ·	19
	Experiment 3. Porosity and Rate of Evaporation · · · · · · · · · · · · · · · · · · ·	20
26.	Influence of Precipitation upon Water Content· · · · · · · · · · · · · · · · · · ·	20
27.	Measurement of Rainfall · · · · · · · · · · · · · · · · · ·	21
28.	Physiography	22
29.	The Influence of Slope $\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots$	22
	The Influence of Surface · · · · · · · · · · · · · · · · · · ·	
31.	The Influence of Climatic Factors \cdots	23
	$\mathbf{Humidity} \cdot \cdot$	
33.	Modifying Influence of Temperature and Wind · · · · · · · · ·	24
34.	Influence of Pressure and Physiographic Factors · · · · · · · · ·	25
35.	Effect of Climate and Habitat \cdots	26
36.	$Measurement\ of\ Humidity \cdot \cdot$	26
37.	Sling and Cog Psychrometers · · · · · · · · · · · · · · · · · · ·	27
38.	Making a Reading	28
39.	Use of Humidity Tables \cdots	29
	Experiment 4. Measuring Humidity · · · · · · · · · · · · · · · · · · ·	29
	$Method\ of\ Habitat\ Study{\cdot}\cdots{\cdot}\cdots{\cdot}\cdots{\cdot}\cdots{\cdot}\cdots{\cdot}\cdots{\cdot}\cdots{\cdot}\cdots{\cdot}\cdots{\cdot}\cdots$	
	Choice of Stations · · · · · · · · · · · · · · · · · · ·	
	Constant Factors · · · · · · · · · · · · · · · · · · ·	
43.	Simultaneous Readings	30

CONTENTS

\mathbf{P}_{A}	AGE
44. Point and Hour Readings · · · · · · · · · · · · · · · · · · ·	
45. Records · · · · · · · · · · · · · · · · · · ·	
46. Kinds of Curves · · · · · · · · · · · · · · · · · · ·	32
47. Combinations of Curves· · · · · · · · · · · · · · · · · · ·	33
48. Plotting Curves · · · · · · · · · · · · · · · · · · ·	33
49. Intervals for the Different Factors · · · · · · · · · · · · · · · · · · ·	35
Experiment 5. Determining the Physical Factors of Habitats · · · · · ·	36
CHAPTER III	
ADJUSTMENT TO WATER	
50. Responses to Water Stimuli · · · · · · · · · · · · · · · · · · ·	37
ABSORPTION	
51. General Relations · · · · · · · · · · · · · · · · · · ·	37
52. The Form of Roots · · · · · · · · · · · · · · · · · · ·	38
53. Primary Regions of the Root · · · · · · · · · · · · · · · · · ·	38
54. Detailed Structure · · · · · · · · · · · · · · · · · · ·	39
55. Origin and Structure of Root-hairs	41
56. Effect of Water Content upon Root-hairs and Roots · · · · ·	42
Experiment 6. Structure of the Root and Formation of Root-hairs · · ·	
Experiment 7. Hydrotropism · · · · · · · · · · · · · · · · · · ·	
57. Imbibition · · · · · · · · · · · · · · · · · · ·	
Experiment 8. Water of Imbibition · · · · · · · · · · · · · · · · · · ·	
59. Osmosis in Root-hairs · · · · · · · · · · · · · · · · · · ·	
60. Influence of Soluble Salts · · · · · · · · · · · · · · · · · · ·	
Experiment 9. Demonstration of Osmosis · · · · · · · · · · · · · · · · · ·	
Experiment 10. The Effect of Soluble Salts · · · · · · · · · · · · · · · · · · ·	
61. Effect of Protoplasm upon the Absorption of Soluble Salts · ·	
62. Diffusion · · · · · · · · · · · · · · · · · · ·	48
Experiment 11. Diffusion in Liquids and in Tissues $\cdots \cdots \cdots$	48
63. Turgidity · · · · · · · · · · · · · · · · · · ·	48
Experiment 12. Demonstration of Turgidity \cdots	49

Transport

	\mathbf{P}_{A}	GE
64.	$General\ Nature \cdots \cdots$	50
65.	Types of Stem Structure $\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots$	50
66.	Stem Structure of an Herbaceous Dicotyledon $\cdots\cdots\cdots$	51
67.	Stems of Monocotyledons $\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots$	52
68.	Structure of Woody Stems $\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots$	52
69.	Functions of the Stem $\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots$	53
	Experiment 13. Structure of Stems \cdots	53
70.	The Upward Movement of the Water \cdots	53
71.	Causes of the Movement $\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots$	54
	Experiment 14. Pathway and Rate of Movement \cdots	55
	Transpiration	
72.	The Structure of a Representative Leaf · · · · · · · · · · · · · · · · · · ·	56
	The Chlorenchym · · · · · · · · · · · · · · · · · · ·	
	The Reduced Bundles · · · · · · · · · · · · · · · · · · ·	
. 1.	Experiment 15. Structure of a Leaf · · · · · · · · · · · · · · · · · · ·	
75.	Diffusion in the Leaf · · · · · · · · · · · · · · · · · · ·	
	Transpiring Surface · · · · · · · · · · · · · · · · · · ·	
	Experiment 16. Measurement of the Actual Transpiring Surface. · · · ·	
77.	Structure and Position of Stomata · · · · · · · · · · · · · · · · · ·	
	The Functions of Stomata · · · · · · · · · · · · · · · · · ·	
	Movements of Guard-cells · · · · · · · · · · · · · · · · · ·	
	Experiment 17. Movement of Guard-cells · · · · · · · · · · · · · · · · · ·	
	Experiment 18. Position of Stomata and Water Loss · · · · · · · · · ·	
80.	The Influence of Physical Factors upon Transpiration · · · · ·	62
81.	The Measurement of Transpiration	63
82.	Measuring Transpiration in the $Field \cdot \cdot$	63
	Experiment 19. Influence of Factors upon the Rate of Transpiration \cdot ·	64
83.	The Amount of Transpiration in Plants · · · · · · · · · · · · · · · · · · ·	65
84.	Relation between Transpiration and Absorption · · · · · · · ·	66
85.	Compensation for Increased Transpiration · · · · · · · · · · · · · · · · · · ·	67
86.	Details of the Adjustment \cdots	67
	Experiment 20. Pathway of Adjustment · · · · · · · · · · · · · · · · · · ·	68

CHAPTER IV

ADJUSTMENT TO LIGHT

\mathbf{P}_{I}	AGE
87. Relation of the Plant to Light \cdots	69
88. The Nature of Light Stimuli · · · · · · · · · · · · · · · · · · ·	70
89. Measurement of Light \cdots	70
90. Making a Standard \cdots	71
91. Making Readings \cdots	72
92. Comparison with the Standard \cdots	72
93. Causes of Variation in Light Intensity · · · · · · · · · · · · · · · · · · ·	73
94. The Effect of Time · · · · · · · · · · · · · · · · · · ·	73
95. The Effect of Altitude · · · · · · · · · · · · · · · · · · ·	74
Experiment 21. Measuring Light Intensity · · · · · · · · · · · · · · · · · · ·	74
96. Reception and Absorption of Light \cdots	75
97. The Amount Absorbed · · · · · · · · · · · · · · · · · · ·	75
Experiment 22. Epidermis and Leaf Prints · · · · · · · · · · · · · · · · · · ·	76
98. The Production of Chlorophyll $\cdots \cdots $	76
99. The Nature of Chlorophyll	77
100. The Influence of Darkness \cdots	78
Experiment 23. Influence of Light and Darkness $\cdots \cdots \cdots \cdots$	79
101. Photosynthesis \cdots	79
102. Absorption and Diffusion of Carbon Dioxide \cdots	79
103. Chemical Changes during Photosynthesis · · · · · · · · · · · · · · · · · ·	80
Experiment 24. Dependence of Photosynthesis upon Aeration	
and Light \cdot	81
$104.\ Measurement\ of\ Photosynthesis\ \cdots\cdots\cdots\cdots\cdots\cdots\cdots$	81
Experiment 25. Relation of Photosynthesis to Sun and Shade· · · · · ·	81
105. Translocation \cdots	81
Experiment 26. Translocation \cdots	82
$106.\ Storage\ of\ Food\ Material \cdot \cdot$	82
Experiment 27. Storage Tissues · · · · · · · · · · · · · · · · · · ·	83
107. Influence of Light upon the Number and Position of Chloroplasts · · · · · · · · · · · · · · · · · ·	83
Experiment 28. Arrangement of Chloroplasts	
	566.1766