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This volume collects the scientific works of Tsien Hsue-shen accomplished during his stay
in the United States as a graduate student, scientist and professor and published in the period of
1938~1956, when the acronautic exploration stepped from low-speed to high-speed regimes
and astronautic technology entered its infant stage.

In these papers, he addressed and solved a series of key problems in acrodynamics, stability
of shells, rocket ballistics and engine analyses, ctc., some of which were path-breaking.
Starting from 1946, with his strategic wisdom, Tsien Hsue-shen made pioneering contributions to
some fields, such as jet propulsion, engineering cybernetics, physical mechanics and engineering
sciences, and so on. All these works feature the unique methodology of turning basic theorics
in natural science into practical tools in tackling complicated engineering problems. It is worth
noting that he first advocated the philosophy of engineering sciences, which has been elucidated
and illustrated in the volume and proved to be the guideline of innovative industrial development.

The collected works might benefit to its extensive readers in getting deeper insight into
the academic contributions, scientific thoughts and studying style of Tsien from various

viewpoints.
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Boundary Layer in Compressible Fluids

Th. von Karmén and H. S. Tsien
(Cali fornia Institute of Technology)

Summary

The first part of the paper is concerned with the theory of the laminar boundary layer in
compressible fluids. The known solution for incompressible fluids is extended to large Mach’s numbers
by successive approximation. The compressibility effect on surface friction is discussed, and the results
applied to estimate the ratio between wave resistance and frictional drag of projectiles and rockets. In
the second part the heat transfer between a hot fluid and a cool surface, then between a hot body and a
cool fluid is discussed. A general relation between drag and heat transfer as function of Mach’s number is

given. The limits where cooling becomes illusory because of the heat produced by friction are determined.

The solution of flow problems in which the density is variable is in general very difficult;
hence, every case in which an exact or even an approximate solution of the equations of the
motion of compressible fluids can be obtained has considerable theoretical interest. Several
authors noticed that the theory of the laminar boundary layer can be extended to the case of
compressible  fluids moving with arbitrarily high velocities without encountering
insurmountable mathematical difficulties. Busemann'! established the equations and calculated
the velocity profile for one speed ratio. (By speed ratio is understood the ratio of the airspeed
to the velocity of sound. ) Frankl™ also made an analysis of the same problem. however, it is
complicated and depends on several arbitrary approximations. The senior author™ obtained a
first approximation by a simple but apparently not sufficiently exact calculation. Hence, in the
first part of the present paper, a better method for the solution of the problem is developed.

The boundary layer theory for very high velocities is not without practical interest. First,
the statement can be found often in technical and semi-technical literature on rockets and
similar high-speed devices that the skin friction becomes more and more insignificant at high
speeds. Of course, it is known that with increasing Reynolds Number, the skin friction
coefficient is decreasing, i.e., the skin friction becomes relatively small in comparison with
the drag produced by wave formation or direct shock. Since high-speed flight will be
performed mostly at high altitude where the air is of very low density, so that the kinematic

viscosity is large, the resulting Reynolds Number will be relatively small in spite of the high speed.

Presented at the Aerodynamics Session. Sixth Annual Meceting, 1. Ae. S. January 26, 1938.

Journal of the Aeronautical Sciences, vol.5, pp.227 - 232, 1938.
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Another interesting point in the theory of the boundary layer in compressible fluids is the
thermodynamic aspect of the problem. In the case of low speeds the influence of the heat
produced in the boundary layer can be neglected both in the calculation of the drag and of the
heat transferred to the wall. In the case of high speeds, however, the heat produced in the
boundary layer is not negligible, but determines the direction of heat flow. In the second part
of the paper a few simple examples of heat flow through the boundary layer are discussed.

It has been found necessary in most parts of this analysis to make the assumption of laminar
flow. This assumption was found necessary because of the lamentable state of knowledge
concerning the laws of turbulent flow of compressible fluids at high speeds. This assumption is
somewhat justified by the fact that — as mentioned above — in many problems where the
results of this paper can be applied, the Reynolds Number is relatively small, so that a
considerable portion of the boundary layer is probably, de facto, laminar. Ackeret*! called
attention to the possibility that the stability conditions in supersonic flow might be quite
different from those occurring in flow with low velocities. The authors also believe that the
stability criteria as developed by Tollmien and others, cannot be applied without modification.
Finally, some conclusions of the paper, as will be pointed out, are also applicable to turbulent
flow. In other cases, as in the calculation of drag, the assumption of laminar flow surely gives

at least the lower limit of its value.

I

If the x -axis is taken along the plate in the direction of the free stream, the y-axis
perpendicular to the plate, and u and v indicate the = and y components of the velocity at any

point, then the simplified equation of motion in the boundary layer is

u . ou_ 0(,0u
P“é§+p”ay—ay("ay) (1)

where both the density pand the viscosity p are variables.
The equation of continuity in this case is

o o
= — (2)
3 ‘(pu)+ay(pv) 0

A third equation determines the energy balance between the heat produced by viscous
dissipation and the heat transferred by conduction and convection. With the same simplification

as used in Egs. (1) and (2), one can write
: o _ 22T, ,(duy’ .
pu5;<c,,-T>+pva—y(c,,-T>_ay(/\ R )+,u<ay) (3)

where ¢, is the specific heat at constant pressure, and 4 is the coefficient of heat conduction. If
Prandtl’s number, ¢, ¢/A is assumed to be equal to 1, then it can be easily shown that both
Eqs. (1) and (3) can be satisfied by equating the temperature T to a certain parabolic function

of the velocity « only. This relation between T and u is
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n= (e (- 6)

where
U = free stream velocity.
M = speed ratio, or Mach’s number of the free stream.
T, = temperature of the free stream.
T., = temperature at the wall of the plate.

Differentiating Eq. (4) one obtains

LG - dfz e (B )]),
where the subscript w refers to conditions existing at the surface of the plate. Now (Qu/9y),, is
always positive; therefore, if [ (k—1)/2 [M?*> (T, /T,) —1 heat is transferred from the fluid
to the wall, if [(k—1)/2]M?>= (T, /T,) — 1 there is no heat transfer between the fluid and
the wall, and if [ (k—1)/2 |M?*<< (T,,/T,) —1 heat is transferred from the wall to the fluid.
If there is no heat transfer, the energy content per unit mass («’/2) + ¢,T is constant in the
whole region of the boundary layer®*).

The pressure being constant the relation between pand T s,

T

The expression for the viscosity based on the kinetic theory of gases is

p=,(T/Ty)'"? (7)
However, the following formula is in closer agreement with experimental data

p=p, (T/T)H)"7 (7a)

Busemann'" calculated the limiting case for which [ (x—1)/2IM?*= (T,,/T,) — 1 using
Eq. (7) and found that for a high Mach’s number, the velocity profile is approximately linear.
The senior author™®', using this linear velocity profile, the integral relation between the

friction and the momentum, and Eq. (7) found that

_ Frictional force per unit width of plate

Cr= (pU?/2) X Length of plate )
B ‘u” x__le }—1/4
The dimensionless quantity @ shown in Table 1 is a function of Mach’s number only.
However, if Eq.(7a) is used, then
_ 40 1 K_le}f(l.ll (8 )
C =6 {1+55 a
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Table 1
0 1 2 5 10 e
e 1.16 1.20 1.25 1.39 1.50 1.57

It is evident that this linear approximation is not satisfactory for small values of Mach’s
number. For M = 0, the case is the same as the Blasius solution'”” for incompressible fluids for
which®1is 1.328.

To solve the problem more rigorously, one has to resort to Egs. (1) and (2). By introducing the
stream function ¢ which is defined by

the equation of continuity, Eq. (2), is satisfied automatically. Now, if in Eq. (1) ¢ is
introduced as the independent variable as was done by von Mises™ in his simplification of the

boundary layer equation for incompressible fluids, and all terms are reduced to non-dimensional form

then
ou* 0o v w . Ou’
aw‘aw(“p” aW) 9)
where
u” = u/U
n* =n/L
¢* = (Y/UL) vpUL /11 (9a)
Pt = po/m
= p/w

and L is a convenient length, say length of the plate.
Eq. (9) can be further simplified by introducing a new independent variable {=¢" /v/n" ,

then

du’ _ df g, 9 (10)
2 dg‘dc(“p“ dC)

This can be solved by the method of successive approximations. Asp” and z" are functions
of temperature only as shown in Egs. (6) and (7) or (7a) and the temperature is a function of
u* then by starting with the known Blasius’ solution'® the right-hand side of Eq. (10) can be

expressed in terms of §. Therefore, one can write
u*'on#x — f( C)

Consequently, the solution of Eq. (10) is
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A: No heat transferred to wall. B: Wall temperature 1/4 of free stream temperature.
C: von Kirmin's first approximation.

Fig.2 Skin friction coefficients

u' :(‘ridc (11
o f
where

P = (- 5F)

and C is determined by the boundary condition,

1 _[F |
_Jn Far (112)

A second approximation can be made based upon the value of «* obtained from Eq. (11).
It has been found in the cases investigated that the third or fourth approximation gives sufficient
accuracy.

Having computed the final «” , the y corresponding to u” can be calculated from
yv U‘On/(flnl') :[sdg/(P.u. ) (12)

Also the skin friction can be computed by the momentum law,

13

o F 2[(, (1 —u'HdC
%’U‘-L VR

The velocity profile, the temperature distribution, and the frictional drag coefficient
are calculated for different values of the Mach’s number of the free strcam, for the case

[(k—1)/2]M?*= (T,/T,) — 1 using the approximate viscosity relation of Eq. (7a). The
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results are shown in Figs. 2 and 3. The velocity profiles for high speeds are very ncarly linear,
but it can be seen that the wall temperature for greater Mach’s numbers is very high. If the free
stream temperature is 40°F, then the wall temperature will be 1 600°F, 3 620°F, 6 540°F, and
10 170°F for Mach’s numbers of 4, 6, 8, and 10, respectively. Therefore, there is no doubt
that the law of viscosity as expressed by Eq. (7a) will not hold. Also at such high temperatures, the
heat transfer due to radiation cannot be neglected. Therefore, the results for extreme Mach’s

numbers are qualitative only.

24
20
e \V/a:\m
- 12—\\\‘\8 \\
8=t S \\
4 = 4\6\ \‘ \\
i SR ~
: L~
0.8 (o2 4//6 //8 A fa=10
o /A1
~|\J0_4 / /i;/
17

0 4 8 12 16 20 24 28 32 36 40
T
ij_?

Fig.3 Velocity and temperature distribution

when no heat is transferred to wall

The change in the constant C¢+/R is appreciable, but not great. It decreases from 1.328 for
M = 0 to 0.975 for M = 10, or about 30 percent. However, for 0 << M <3 the change of the
constant is very small.

Fig. 2 also shows that Eq. (8a) which was obtained by using the linear approximation is
fairly accurate for very high Mach’s numbers.

As examples, consider first a projectile and second, a wingless sounding rocket. Taking
the diameter of the projectile to be 6 in, the length 24 in, the velocity 1 500 ft/sec and the
altitude 32 800 ft (10 km), then the Reynolds Number based on the total length is 7.86 X 10°

and the speed ratio is 1.52. From Fig.2 the skin friction coefficient is

C; = (1.286 X 107)/+/7.86 = 0. 000 459

Changing the skin friction coefficient (based on the skin arca) to the drag coefficient (based on

the maximum cross-section) s one obtains

Cp, = 0.0055
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Fig.4 Velocity and temperature distribution when the

wall temperature is 1/4 of the free strcam temperature

The drag coefficient due to wave formation taken from Kent’s experiments™” is

Cp, = 0.190

Therefore, the ratio of skin friction to wave resistance is 0. 005 5/0. 190 = 0. 029.

However, the ratio is greatly changed in the case of the rocket. Taking the diameter of the
rocket to be 9 in, the length 8 ft, and the altitude of flight 50 km ™ (164 000 ft), the velocity
3 400 ft/sec, then the Reynolds Number based on a density ratio at that altitude of 0. 000 67
and temperature 25 C. (deduced from data on meteors) is 6. 14 X 10°, and the speed ratio is

3.00. From Fig.2, the skin friction coefficient is

Ci= (1.213 X 103 //11. 4 = 0. 003 60

Then

+  The hydrodynamic equation holds so long as the mean free path of the molecules is small in comparison
with the thickness of the boundary layer. For this case the thickness of the boundary layer is zero at the nose,
however, at a distance 1/4 of the length of the rocket it already amounts to 3. 2 cm, while the calculated mean
free path of the air molecules at the altitude considered is about 1. 1< 10~?cm Hence it appears that even for
this case the theory can be safely applied. This conclusion is substantiated by the experimental results of
H. Ebert in “Darstellung der Stromungsvorginge wvon Gasen bei neidrigen Drucken mittels Reynoldsscher
Zahlen ,” Zeitschrift fur Physik, Bd. 85, S. 561 - 564, 1933.
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Cp, = 0.123
The drag coefficient due to wave formation from Kent’s experimentst”’ is
Cp, = 0.100

Therefore, the ratio of skin friction and wave resistance is now 0. 123/0. 100 = 1. 23. If
the boundary layer is partly turbulent, the ratio will be even greater. This shows clearly the
importance of skin friction in the case of a slender body moving with high speed in extremely
rarcfied air. It also disproves the belief that wave resistance would always be the predominating
part in the total drag of a body moving with a velocity higher than that of sound. The reason
underlying this fact can be casily understood when one recalls that the wave resistance of a body
1s approximately directly proportional to the velocity, while the skin friction is proportional to
the velocity raised to a power between 1.5 and 2. Therefore, the ratio of skin friction to wave
resistance increases with the speed. With very high velocities and high kinematic viscosity, the

wave resistance may even be a negligible portion of the total drag of the body.

I

In order to point out the thermodynamic aspect of the problem two cases will be
considered; the flow of a hot fluid along a surface which is kept at a constant temperature
inferior to that of the fluid, and the case of a hot wall cooled by a fluid of lower temperature.
The problems treated in this part have been discussed before in two very interesting papers by
L. Crocco™® . He especially gives an elegant trcatment of the cooling problem in the case of
very high velocities (“Hyperaviation”). The authors feel that their treatment is somewhat
more general and extended than Crocco’s previous analysis.

An interesting general relation between the heat transferred through the wall and the
frictional drag can be obtained using the assumption that Prandtl’s number, i. ¢., the ratio
cptt/A, is equal to unity. The same assumption was used also in the previous calculations. It is
remarkable that the relation holds also as well for laminar as for turbulent flow. The heat flow

g per unit time and unit area of the wall surface is
q=A.(dT/y)w
and the frictional drag 7 per unit area is
T = p,,(Ou/3y),

Using Eq. (4) the ratio g/ can be calculated from the relation

i_'LwB[ 1T K__'leJ (14)
T o Hw U ( Ty )+ 2

where T}, is the absolute temperature, and U is the velocity of the fluid in the free stream, T\ is
the absolute temperature at the wall, A, and s, are the heat conduction and viscosity coefficients

of the fluid corresponding to the wall temperature and M denotes Mach’s number. Substituting
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M = 0 one obtains from Eq. (14)

g ATi—T. &Ti—Tv
R U (15

This is the relation known as Prandtl’s or G. [. Taylor’s formula, first discovered by
O. Reynolds. Hence Eq. (14) gives the correction of this result for compressibility effects.

In the case Ty > T, 1. c. » when the wall 1s colder than the free strecam. the effect of
compressibility is to increase the heat transferred through the wall. However, it would be
erroncous to interpret this result as an “improvement” in cooling because at high speed the heat
produced in the boundary layer is of the same order as the heat transferred through the wall. In
order to determine the efficiency of the cooling a complete heat balance must be made. For this
purpose Eq. (14) does not give sufficient information and the velocity and the temperature
distribution in the boundary layer must be computed. Such calculations were carried out for the
particular assumption T,, = T,/4, i. e., for the particular case in which the absolute
temperature of the wall is kept constant at a value equal to one-fourth of the temperature of the
hot fluid. With the same assumption for the variation of x£as in Part [, the results shown in
Fig. 2 and Fig. 4 were obtained. The variation of C;vR with M is similar to that obtained in
the case without heat conduction through the wall. Also the highest temperature in the boundary layer
is very high for extreme Mach’s numbers. However, the temperature maximum occurs some
distance from the wall.

The heat transferred from the boundary layer to the wall can be calculated as follows:

The initial slope of the velocity profile is equal to

(au)w_gﬁ(@)@ (16)

L\ 4

By differentiation of Eq. (4) the relation between the velocity slope and the temperature

gradient can be obtained. Using Eq. (7a) and substituting Eq. (16) into Eq. (5) then
(3T /2y)., = K[ T\, VR/(4Lv/n") ] 17)
where
K = (4"7/2)(0. 75+ [ (x— 1) /2]M?) ¥RC;

Therefore, the heat transferred to a strip of unit width of the wall of length L per unit time is

equal to

Q=["(45T) de = KAJAR[" Ar

or approximately

Q= KA. T, VR (18)
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Fig.5 Heat balance when the wall temperature is 1/4 of

the free stream temperature

where K is given in Table 2.

Table 2
M K
0 1.53
1 1.93
3.12
10.53
10 33.98

The total heat balance is shown in Fig. 5. The *dissipation” curve represents in
dimensionless form the heat produced by friction per unit time and unit width of the plate.
The lower curve shows the increase (or decrease) of the heat content per unit time and unit
width. The difference of the ordinates corresponds to the heat transferred through the wall. It
is seen that cooling takes place for M </2. 6. Beyond this limit more heat 1s produced by
friction than the amount which can be transferred to the wall and, as a matter of fact, the fluid
is heated.

In the case T\, > Ty, i.e. » when the wall is hotter than the free stream, the ratio between
the heat transfer and the drag decreases with increasing Mach’s number. This is shown in Fig. 6
where the ordinate represents the ratio between g/t with compressibility effect (according to
Eq. (14)) to g/t without compressibility effect (according to Eq. (15)). The calculation was
carried out for a gas temperature of —55°F , and a wall temperature of 180°F, and 300°F. It is



