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Preface

Around 1970, an abrupt change occurred in the study of holomorphic
functions of several complex variables. Sheaves vanished into the back-
ground, and attention was focused on integral formulas and on the ‘“hard
analysis”’ problems that could be attacked with them: boundary behavior,
complex-tangential phenomena, solutions of the d-problem with control
over growth and smoothness, quantitative theorems about zero-varieties,
and so on. The present book describes some of these developments in the
simple setting of the unit ball of C".

There are several reasons for choosing the ball for our principal stage.
The ball is the prototype of two important classes of regions that have been
studied in depth, namely the strictly pseudoconvex domains and the bounded
symmetric ones. The presence of the second structure (i.e., the existence of a
transitive group of automorphisms) makes it possible to develop the basic
machinery with a minimum of fuss and bother. The principal ideas can be
presented quite concretely and explicitly in the ball, and one can quickly
arrive at specific theorems of obvious interest. Once one has seen these
in this simple context, it should be much easier to learn the more complicated
machinery (developed largely by Henkin and his co-workers) that extends
them to arbitrary strictly pseudoconvex domains.

In some parts of the book (for instance, in Chapters 14-16) it would,
however, have been unnatural to confine our attention exclusively to the ball,
and no significant simplifications would have resulted from such a restriction.

Since the Contents lists the topics that are covered, this may be the place
to mention some that might have been included but were not:

The fact that the automorphisms of the ball form a Lie group has been
totally ignored.

There is no discussion of concepts such as curvature or geodesics with
respect to the geometry that has these automorphisms as isometries.

The Heisenberg group is only mentioned in passing, although it is an
active field of investigation in which harmonic analysis interacts with several
complex variables.

Most of the refined estimates that allow one to control solutions of the
d-problem have been omitted. I have included what was needed to present the
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Vi Preface

Henkin-Skoda theorem that characterizes the zeros of functions of the
Nevanlinna class.

Functions of bounded mean oscillation are not mentioned, although they
have entered the field of several complex variables and will certainly play an
important role there in the future.

To some extent, these omissions are due to considerations of space—I
wanted to write a book of reasonable size—but primarily they are of course
a matter of personal choice.

As regards prerequisites, they consist of advanced calculus, the basic facts
about holomorphic functions of one complex variable, the Lebesgue theory
of measure and integration, and a little functional analysis. The existence of
Haar measure on the group of unitary matrices is the most sophisticated
fact assumed from harmonic analysis. Everything that refers specifically
to several complex variables is proved.

I have included a collection of open problems, in the hope that this may
be one way to get them solved. Some of these look very simple. The fact that
they are still unsolved shows quite clearly that we have barely begun to
understand what really goes on in this area of analysis, in spite of the con-
siderable progress that has been made.

I have tried to be as accurate as possible with regard to credits and
priorities. The literature grows so rapidly, however, that I may have over-
looked some important contributions. If this happened, I offer my sincere
apologies to their authors.

Several friends have helped me to learn the material that is presented
here—in conversations, by correspondence, and in writing joint papers.
Among these, I especially thank Pat Ahern, Frank Forelli, John Fornaess,
Alex Nagel, and Lee Stout.

Finally, I take this opportunity to express my appreciation to the National
Science Foundation for supporting my work over a period of many years,
to the William F. Vilas Trust Estate for one of its Research Professorships,
and to the Mathematics Department of the University of Wisconsin for
being such a friendly and stimulating place to work in.

Madison, Wisconsin Walter Rudin
March 1980
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Chapter |

Preliminaries

1.1. Some Terminology

1.1.1. Throughout this book, C will denote the complex field, and C" will
be the cartesian product of n copies of C; here n is any positive integer.
The points of C" are thus ordered n-tuples z = (zy,..., z,), where each
z; € C. Algebraically, C" is an n-dimensional vector space over C. Topologi-
cally, C" is the euclidean space R*" of real dimension 2n.

The usual vector space notations

(1) AA = {Aa: A€ C,ae A},
2) A+B={a+bacA beB}

will be freely used (for A = C", B = C", A€ C), as will the customary symbols
for the Lebesgue spaces L?(u) (consisting of measurable complex functions
f such that | f|? is integrable with respect to whatever measure y is under
consideration) and for the spaces C* (consisting of complex functions whose
kth-order partial derivatives are continuous).

The symbol

3) [ X-Y
means that f is a map with domain X, whose range lies in Y.
As usual, C(X) is the space of all continuous functions f: X — C, where

X is any topological space.

1.1.2. The inner product
§)) (z,w) =) z;w; (z,weC")
j=1

and the associated norm

2 lz| = (2, 25" (zeC")



