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Series Preface

Mathematics is playing an ever more important role in the physical and
biological sciences, provoking a blurring of boundaries between scientific
disciplines and a resurgence of interest in the modern as well as the clas-
sical techniques of applied mathematics. This renewal of interest, both in
research and teaching, has led to the establishment of the series: Texts in
Applied Mathematics (TAM).

The development of new courses is a natural consequence of a high level of
excitement on the research frontier as newer techniques, such as numerical
and symbolic computer systems, dynamical systems, and chaos, mix with
and reinforce the traditional methods of applied mathematics. Thus, the
purpose of this textbook series is to meet the current and future needs of
these advances and to encourage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate
and beginning graduate courses, and will complement the Applied Math-
ematical Sciences (AMS) series, which will focus on advanced textbooks
and research-level monographs.

Pasadena, California J.E. Marsden
Providence, Rhode Island L. Sirovich
College Park, Maryland S.S. Antman



Preface

This textbook has grown out of a course which we teach periodically at the
University of lowa. We have beginning graduate students in mathematics
who wish to work in numerical analysis from a theoretical perspective, and
they need a background in those “tools of the trade” which we cover in
this text. In the past, such students would ordinarily begin with a one-
year course in real and complex analysis, followed by a one or two semester
course in functional analysis and possibly a graduate level course in ordi-
nary differential equations, partial differential equations, or integral equa-
tions. We still expect our students to take most of these standard courses.
The course based on this book allows these students to move more rapidly
into a research program.

The textbook covers basic results of functional analysis, approximation
theory, Fourier analysis and wavelets, calculus and iteration methods for
nonlinear equations, finite difference methods, Sobolev spaces and weak
formulations of boundary value problems, finite element methods, elliptic
variational inequalities and their numerical solution, numerical methods for
solving integral equations of the second kind, boundary integral equations
for planar regions with a smooth boundary curve, and multivariable poly-
nomial approximations. The presentation of each topic is meant to be an
introduction with a certain degree of depth. Comprehensive references on a
particular topic are listed at the end of each chapter for further reading and
study. For this third edition, we add a chapter on multivariable polynomial
approximation and we revise numerous sections from the second edition to
varying degrees. A good number of new exercises are included.



X Preface

The material in the text is presented in a mixed manner. Some topics are
treated with complete rigour, whereas others are simply presented without
proof and perhaps illustrated (e.g. the principle of uniform boundedness).
We have chosen to avoid introducing a formalized framework for Lebesgue
measure and integration and also for distribution theory. Instead we use
standard results on the completion of normed spaces and the unique ex-
tension of densely defined bounded linear operators. This permits us to
introduce the Lebesgue spaces formally and without their concrete realiza-
tion using measure theory. We describe some of the standard material on
measure theory and distribution theory in an intuitive manner, believing
this is sufficient for much of the subsequent mathematical development.
In addition, we give a number of deeper results without proof, citing the
existing literature. Examples of this are the open mapping theorem, Hahn-
Banach theorem, the principle of uniform boundedness, and a number of
the results on Sobolev spaces.

The choice of topics has been shaped by our research program and inter-
ests at the University of Iowa. These topics are important elsewhere, and
we believe this text will be useful to students at other universities as well.

The book is divided into chapters, sections, and subsections as appropri-
ate. Mathematical relations (equalities and inequalities) are numbered by
chapter, section and their order of occurrence. For example, (1.2.3) is the
third numbered mathematical relation in Section 1.2 of Chapter 1. Defini-
tions, examples, theorems, lemmas, propositions, corollaries and remarks
are numbered consecutively within each section, by chapter and section. For
example, in Section 1.1, Definition 1.1.1 is followed by an example labeled
as Example 1.1.2.

We give exercises at the end of most sections. The exercises are numbered
consecutively by chapter and section. At the end of each chapter, we provide
some short discussions of the literature, including recommendations for
additional reading.

During the preparation of the book, we received helpful suggestions
from numerous colleagues and friends. We particularly thank P.G. Ciar-
let, William A. Kirk, Wenbin Liu, and David Stewart for the first edition,
B. Bialecki, R. Glowinski, and A.J. Meir for the second edition, and Yuan
Xu for the third edition. It is a pleasure to acknowledge the skillful editorial
assistance from the Series Editor, Achi Dosanjh.



Contents

Series Preface
Preface

1 Linear Spaces
1.1 Linearspaces . . . .. .. ... ... .....
1.2 Normed spaces . . . . . . .. ... ......
1.2.1 Convergence . . . .. . .. .. ....
1.2.2 Banachspaces .. ...........
1.2.3 Completion of normed spaces . . . . .
1.3 Inner product spaces . . . .. ... ... ...
1.3.1 Hilbert spaces. . . . . .. ... ....

1.3.2 Orthogonality . . . . ... ... .... _

1.4 Spaces of continuously differentiable functions

1.4.1 Holderspaces . . . . . . .. ... ...
1.5 LPspaces . . . . . .. .. . oo,
1.6 Compactsets . . . .. . . . .. ... .....

2 Linear Operators on Normed Spaces
2.1 Operators . . . . . . .« v i e
2.2 Continuous linear operators . . . . .. .. ..
2.2.1 L(V,W) as a Banach space . . . . ..
2.3 The geometric series theorem and its variants
2.3.1 A generalization . . .. ... ... ..

vii

ix

10
13
15
22
27
28
39
41
44
49



xii

Contents

2.3.2 A perturbationresult . . .. ... ... .. 66
2.4 Some more results on linear operators . . . . . .. ... .. 72
2.4.1 An extension theorem . .. .. .. ... ....... 72
2.4.2 Open mapping theorem . . . ... ... ... .... 74
2.4.3 Principle of uniform boundedness . . . . .. ... .. 75
2.4.4 Convergence of numerical quadratures . . . . . . . . 76
2.5 Linear functionals . .. ... ... .............. 79
2.5.1 An extension theorem for linear functionals . . . . . 80
2.5.2 The Riesz representation theorem . . ... ... .. 82
2.6 Adjoint operators . . . . . . . .. ... 85
2.7 Weak convergence and weak compactness . . . .. .. ... 90
2.8 Compact linear operators . . . . . .. .. . .. .. ... .. 95
2.8.1 Compact integral operatorson C(D) . . . . . . . .. 96
2.8.2 Properties of compact operators . . . . . .. .. .. 97
2.8.3 Integral operators on L?(a,b) . . . . . .. ... ... 99
2.8.4 The Fredholm alternative theorem . . .. .. .. .. 101
2.8.5 Additional results on Fredholm integral equations . 105
2.9 The resolvent operator . . . . . .. ... .. ... ..... 109
2.9.1 R(\) as a holomorphic function . . . . . .. ... .. 110
Approximation Theory 115
3.1 Approximation of continuous functions by polynomials . . . 116
3.2 Interpolation theory . . . . . . .. ... ... ... ... 118
3.2.1 Lagrange polynomial interpolation . . . . . ... .. 120
3.2.2 Hermite polynomial interpolation . . . . . . . .. .. 122
3.2.3 Piecewise polynomial interpolation . . . .. . .. .. 124
3.2.4 Trigonometric interpolation . . . . . .. ... .. .. 126
3.3 Best approximation. . . . ... ... 131
3.3.1 Convexity, lower semicontinuity . . . . . .. . .. .. 132
3.3.2 Some abstract existence results . . . . . . ... ... 134
3.3.3 Existence of best approximation . ... .. ... .. 137
3.3.4 Uniqueness of best approximation . . . ... .. .. 138
3.4 Best approximations in inner product spaces, projection on
closed convexsets. . . . . . . . .. ... 142
3.5 Orthogonal polynomials . . . . . ... .. ... ... .... 149
3.6 Projection operators . . . . . . . ... .. ... 154
3.7 Uniform error bounds . . . . ... ... ... ... ... 157
3.7.1 Uniform error bounds for L2-approximations . . . . 160
3.7.2 LZ%-approximations using polynomials . .. ... .. 162
3.7.3 Interpolatory projections and their convergence . . . 164
Fourier Analysis and Wavelets 167
4.1 Fourier series . . . . . . . . . ..o 167
4.2 Fourier transform . . . . . ... .. Lo 181

4.3 Discrete Fourier transform . . . . . . . .. ... ... .... 187



Contents xiii

44 Haarwavelets . . . . . . . ... ... ... ... ... 191
4.5 Multiresolution analysis . . . . . . . . ... ... ... ... 199
Nonlinear Equations and Their Solution by Iteration 207
5.1 The Banach fixed-point theorem . . . . .. ... ... ... 208
5.2 Applications to iterative methods . . . . . . .. ... .. .. 212
5.2.1 Nonlinear algebraic equations . . . . . . ... .. .. 213
5.2.2 Linear algebraic systems . . . . . .. .. .. ... .. 214
5.2.3 Linear and nonlinear integral equations . . . . . .. 216
5.2.4 Ordinary differential equations in Banach spaces . . 221
5.3 Differential calculus for nonlinear operators . . . . . . . .. 225
5.3.1 Fréchet and Gateaux derivatives . . . . . .. .. .. 225
5.3.2 Mean value theorems . . . . . . .. ... ... .... 229
5.3.3 Partial derivatives . . . . . ... ... L. 230
5.3.4 The Gateaux derivative and convex minimization . . 231
54 Newton’smethod . . . . . .. ... ... ... ........ 236
5.4.1 Newton’s method in Banach spaces . . . . . . . . .. 236
5.4.2 Applications . . . .. ... oL 239
5.5 Completely continuous vector fields . . . . . .. ... .. .. 241
5.5.1 The rotation of a completely continuous vector field 243
5.6 Conjugate gradient method for operator equations . . . . . 245
Finite Difference Method 253
6.1 Finite difference approximations . . . .. . .. ... .. .. 253
6.2 Lax equivalence theorem . . . . . . .. .. ... ... .... 260
6.3 More on convergence . . . . . . . ... 269
Sobolev Spaces 277
7.1 Weak derivatives . . . . . . . ... ... ... 277
7.2 Sobolevspaces . . .. .. ... ... 283
7.2.1 Sobolev spaces of integer order . . . . . ... .. .. 284
7.2.2 Sobolev spaces of real order . . . . . . . ... ... 290
7.2.3 Sobolev spaces over boundaries . . . . . ... .. .. 292
73 Properties . . : : . « ¢ o o s o was s w @ v IR R 293
7.3.1 Approximation by smooth functions . . .. . . . .. 293
7.3.2 Extensions . . . . .. ... .. ... 294
7.3.3 Sobolev embedding theorems . . . . .. ... .. .. 295
734 Traces . . . . . . . . .o 297
7.3.5 Equivalent norms . . . . .. ... ... 298
7.3.6 A Sobolev quotient space . . . ... .. ... .... 302
7.4 Characterization of Sobolev spaces via the Fourier transform 308
7.5 Periodic Sobolev spaces . . . . ... ... ... 311
7.5.1 Thedualspace .. .. ................. 314
7.5.2 Embedding results . . . ... ... ... ... ..., 315

7.5.3 Approximationresults . . . . ... ... ... 316



xiv

10

Contents
7.5.4 An illustrative example of an operator . . . . . . . . 317
7.5.5 Spherical polynomials and spherical harmonics . . . 318
7.6 Integration by parts formulas . . . . . ... ..o 323
Weak Formulations of Elliptic Boundary Value Problems 327

8.1 A model boundary value problem . . . . . .. ... ... .. 328
8.2 Some general results on existence and uniqueness . . . . . . 330
8.3 The Lax-Milgram Lemma . . . . . ... ... ... ..... 334

8.4 Weak formulations of linear elliptic boundary value problems 338
8.4.1 Problems with homogeneous Dirichlet boundary con-

AItIONS + s v e r RO BB EEEEREB ES A B S § 4% & 9 338

8.4.2 Problems with non-homogeneous Dirichlet boundary
conditions « « s w5 5 5 5 G @ s e e 6 5 E 5 8 5. s 339
8.4.3 Problems with Neumann boundary conditions . . . . 341
8.4.4 Problems with mixed boundary conditions . . . . . . 343

8.4.5 A general linear second-order elliptic boundary value
problem . . .. .. ... 344
8.5 A boundary value problem of linearized elasticity . . . . . . 348
8.6 Mixed and dual formulations . . . . .. .. ... .. .. .. 354
8.7 Generalized Lax-Milgram Lemma . . . . . . ... ... ... 359
8.8 A nonlinear problem . . . . . . .. .. ... ... 361
The Galerkin Method and Its Variants 367
9.1 The Galerkin method . . . .. ... ... ... ....... 367
9.2 The Petrov-Galerkin method . . . .. .. ... ... .... 374
9.3 Generalized Galerkin method . . . . . ... ... ... ... 376
9.4 Conjugate gradient method: variational formulation . . . . 378
Finite Element Analysis 383
10.1 One-dimensional examples . . . . . . . ... ... ... ... 384
10.1.1 Linear elements for a second-order problem . . . .. 384
10.1.2 High order elements and the condensation technique 389
10.1.3 Reference element technique . . . . . . . . . . .. .. 390
10.2 Basics of the finite element method . . . . . . . .. ... .. 393
10.2.1 Continuous linear elements . . . . . .. .. ... .. 394
10.2.2 Affine-equivalent finite elements . . . . . . . . .. .. 400
10.2.3 Finite element spaces . . . . . .. ... ... . ... 404
10.3 Error estimates of finite element interpolations . . . . . . . 406
10.3.1 Local interpolations . . . . . . ... ... ... ... 407
10.3.2 Interpolation error estimates on the reference element 408
10.3.3 Local interpolation error estimates . . . . . . . . .. 409
10.3.4 Global interpolation error estimates . . . ... . .. 412

10.4 Convergence and error estimates . . . . .. ... ... ... 415



Contents XV

11 Elliptic Variational Inequalities and Their Numerical Ap-

proximations 423
11.1 From variational equations to variational inequalities . . . . 423
11.2 Existence and uniqueness based on convex minimization . . 428
11.3 Existence and uniqueness results for a family of EVIs. . . . 430
11.4 Numerical approximations . . . . . . . ... ... ... ... 442
11.5 Some contact problems in elasticity . . . . . .. .. .. ... 458

11.5.1 A frictional contact problem . . . . . . . . . ... .. 460

11.5.2 A Signorini frictionless contact problem . . . .. .. 465

12 Numerical Solution of Fredholm Integral Equations of the

Second Kind 473
12.1 Projection methods: General theory . . . . .. .. .. ... 474
12.1.1 Collocation methods . . . . . . .. ... ... .... 474
12.1.2 Galerkin methods . . . ... ... .. ... ..... 476
12.1.3 A general theoretical framework . . . ... ... .. 477
12.2 Examples . . . . . . . L oo 483
12.2.1 Piecewise linear collocation . . . . .. ... ... .. 483
12.2.2 Trigonometric polynomial collocation . . . . .. .. 486
12.2.3 A piecewise linear Galerkin method . . .. ... .. 488
12.2.4 A Galerkin method with trigonometric polynomials. 490
12.3 Iterated projection methods . . . . . . .. ... .. ... .. 494
12.3.1 The iterated Galerkin method . . . . . . . . . .. .. 497
12.3.2 The iterated collocation solution . . . . .. ... .. 498
12.4 The Nystrom method . . . . . .. ... .. ... ... ... 504

12.5

12.6

12.7

12.4.1 The Nystrom method for continuous kernel functions 505
12.4.2 Properties and error analysis of the Nystrom method 507

12.4.3 Collectively compact operator approximations. . . . 516
Product integration . . . . . . . ... ... 0L L. 518
12.5.1 Erroranalysis . . . . . . ... ... ... .. ... .. 520
12.5.2 Generalizations to other kernel functions . . . . . . . 523
12.5.3 Improved error results for special kernels. . . . . . . 525
12.5.4 Product integration with graded meshes . . . . . . . 525
12.5.5 The relationship of product integration and colloca-

tion methods . . . .. ... .. ... ... ... 529
Iteration methods . . . . . . . . . .. ... ... .. 531
12.6.1 A two-grid iteration method for the Nystrém method 532
12.6.2 Convergence analysis . . . . . . .. ... .. ..... 535
12.6.3 The iteration method for the linear system . . . . . 538
12.6.4 An operationscount . . . .. ... ... .. ..... 540
Projection methods for nonlinear equations . . . . .. . .. 542
12.7.1 Linearization . . . .. . ... ... ... ... .... 542
12.7.2 A homotopy argument . . . . . . .. .. ... ..., 545

12.7.3 The approximating finite-dimensional problem . . . 547



XVi Contents

13 Boundary Integral Equations
13.1 Boundary integral equations . . . .. ... ...

13.1.1 Green'’s identities and representation formula . . . .
13.1.2 The Kelvin transformation and exterior problems

13.1.3 Boundary integral equations of direct type
13.2 Boundary integral equations of the second kind .
13.2.1 Evaluation of the double layer potential .
13.2.2 The exterior Neumann problem . . . . .
13.3 A boundary integral equation of the first kind .
13.3.1 A numerical method . . . . .. ... ...

14 Multivariable Polynomial Approximations
14.1 Notation and best approximation results . . . . .
14.2 Orthogonal polynomials . . . . .. .. ... ...
14.2.1 Triple recursion relation . . . . . . . . ..

14.2.2 The orthogonal projection operator and its error . .

14.3 Hyperinterpolation . . . . . . . .. .. ... ...

14.3.1 The norm of the hyperinterpolation operator

14.4 A Galerkin method for elliptic equations . . . . .
14.4.1 The Galerkin method and its convergence

References

Index

551
552
553
555
559
565
568
571
577
579

583
583
585
588
590
592
593
593
595

601

617



1

Linear Spaces

Linear (or vector) spaces are the standard setting for studying and solv-
ing a large proportion of the problems in differential and integral equa-
tions, approximation theory, optimization theory, and other topics in ap-
plied mathematics. In this chapter, we gather together some concepts and
results concerning various aspects of linear spaces, especially some of the
more important linear spaces such as Banach spaces, Hilbert spaces, and
certain function spaces that are used frequently in this work and in applied
mathematics generally.

1.1 Linear spaces

A linear space is a set of elements equipped with two binary operations,
called vector addition and scalar multiplication, in such a way that the
operations behave linearly.

Definition 1.1.1 Let V be a set of objects, to be called vectors; and let
K be a set of scalars, either R, the set of real numbers, or C, the set of
complex numbers. Assume there are two operations: (u,v) — uw+v € V
and (a,v) — av € V, called addition and scalar multiplication respectively,
defined for any u,v € V and any a € K. These operations are to satisfy
the following rules.

1. u+v=v+u for any u,v € V (commutative law);

2. (u+v)+w=u+ (v+w) for any u,v,w € V (associative law);

K. Atkinson and W. Han, Theoretical Numerical Analysis: A Functional Analysis 1
Framework, Texts in Applied Mathematics 39, DOI: 10.1007/978-1-4419-0458-4 1,
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2 1. Linear Spaces

3. there is an element 0 € V such that 0+v = v for anyv € V (existence
of the zero element);

4. for any v € V, there is an element —v € V such that v + (—v) = 0
(existence of negative elements);

5 lv=wv foranyv eV;

6. a(Bv) = (af)v for any v € V, any a,B8 € K (associative law for
scalar multiplication);

7. a(u +v) = au+av and (a + B)v = av + Bv for any u,v € V, and
any a, B € K (distributive laws).

Then V is called a linear space, or a vector space.

When K is the set of the real numbers, V' is a real linear space; and when
K is the set of the complex numbers, V' becomes a complex linear space. In
this work, most of the time we only deal with real linear spaces. So when
we say V is a linear space, the reader should usually assume V is a real
linear space, unless explicitly stated otherwise.

Some remarks are in order concerning the definition of a linear space.
From the commutative law and the associative law, we observe that to add
several elements, the order of summation does not matter, and it does not
cause any ambiguity to write expressions such as u + v + w or Z;;I Uj.
By using the commutative law and the associative law, it is not difficult
to verify that the zero element and the negative element (—v) of a given
element v € V are unique, and they can be equivalently defined through
the relations v 4+ 0 = v for any v € V, and (—v) 4+ v = 0. Below, we write
u — v for u + (—v). This defines the subtraction of two vectors. Sometimes,
we will also refer to a vector as a point.

Example 1.1.2 (a) The set R of the real numbers is a real linear space
when the addition and scalar multiplication are the usual addition and
multiplication. Similarly, the set C of the complex numbers is a complex
linear space.

(b) Let d be a positive integer. The letter d is used generally in this work for
the spatial dimension. The set of all vectors with d real components, with
the usual vector addition and scalar multiplication, forms a linear space
R4, A typical element in R? can be expressed as ¢ = (z1,...,24)T, where
z1,...,z4 € R. Similarly, C?% is a complex linear space.

(c) Let @ C R? be an open set of R%. In this work, the symbol Q always
stands for an open subset of R%. The set of all the continuous functions on
Q forms a linear space C(f2), under the usual addition and scalar multipli-
cation of functions: For f,g € C(f2), the function f + g defined by

(f+9)(=) = f(x) +g(z), ze,



