~m Microsoft

Windows
=Rt

[£] Charles Petzold & -F' q'

Programming Windows
Sixth Edition

{ERC#FHIXAML

HmBEWindows 8@%*2-

N BCHIB H i fir AL

/ POSTS & TELECOM PRESS

\\

B Microsoft

Wlndows

FEE1Z 1T (F6k se:‘c#ﬁ)

[22] Charles Petzold =

A B HB L OH R #E

=[N

EE#&EMME (C1P) IR

WindowsFE/F Wit : Z6RR : 383 / (38) (iR
(Petzold, C.) #. — JbxT : AERHFBHEHRA:, 2013.10
ISBN 978-7-115-32976-9

I. @©W- II. Off-- II. OWindows{E RS — 2%
Bit—3%3 IV. OTP316.7

[A< B B IECIPE#E #% - (2013) 552017895

iR AL H B

Charles Petzold, Programming Windows, Sixth Edition (ISBN: 9780735671768)

Copyright 2013 by Posts & Telecom Press.

Original English language edition copyright ©2013 by Microsoft Corporation.

Published by arrangement with the original publisher, Microsoft Press, a division of Microsoft
Corporation, Redmond, Washington, U.S.A. All rights reserved.

745 A SRR Y B S E IR AR AL SEAR A R AR 8 AR AT AR . RS HARZE B EIFR,
RUERAAXEFSIEERBTAE.

FRARERA, RALER.

¢ E [3€] Charles Petzold
T E IR
THEENE] RBELa RS
¢ ANRESHHBRAERAET i 4w 14 5

R4 100061 HF I 315@ptpress.com.cn
M4k http://www.ptpress.com.cn

b5 & IE K EN kA PR 7 Bl
¢ JFZA: 800x1000 1/16

Elgk. 71
FH: 1684 T 2013 4E10H 45 1)
EN%: 1-2 500 2013 4210 HAb5T 5 1 KENRI

FEREFRZES BT 01-2013-2652 5
T 148.00 G (E. D

EERE ML (010067132692 ENZEFRSMLE: (010) 67129223
R#BRE#L: (010)67171154

Contents at a glance

PART I ELEMENTALS

CHAPTER 1 Markup and Code 3
CHAPTER 2 XAML Syntax 31
CHAPTER 3 Basic Event Handling 69
CHAPTER 4 Presentation with Panels 97
CHAPTER 5 Control Interaction 139
CHAPTER 6 WinRT and MVVM 193
CHAPTER 7 Asynchronicity 221
CHAPTER 8 App Bars and Popups 261
CHAPTER 9 Animation 329
CHAPTER10 Transforms 377
CHAPTER11 The Three Templates 449
CHAPTER12 Pages and Navigation 539
BPART U SPECIALTIES

CHAPTER13 Touch, Etc. 615
CHAPTER 14 Bitmaps 683
CHAPTER 15 Going Native 779
CHAPTER 16 Rich Text 845
CHAPTER 17 Share and Print 893
CHAPTER 18 Sensors and GPS 953
CHAPTER 19 Pen (Also Known as Stylus) 1013

Index 1057

PART i SPECIALTIES

Chapter 13 Touch, Etc. 615
A Pointer Roadmap.ottt 616
A First Dab at Finger Painting. 619
Capturing the Pointer. i 622
Editing withaPopupMenu.......... ... 630
Pressure Sensitivity.cooiiiiiiiiiiiiiiie ittt 633
Smoothing the Taperso i 637
How Do | Save My Drawings?.ttt i, 646
Real and Surreal Finger Painting TN T 647
A TOUCH PIANIO: 5 55 500 56 5 s 6 558 5505 5006 8 658 5 53005 oo 6 67906 5 508 5 6 o s o i 3 649
Manipulation, Fingers, and Elements 655
Working with Inertia. 663
An XYSlider Control 667
Centered Scaling and Rotation. 673
Single-Finger Rotation. 676

Chapter 14 Bitmaps 683
PIXEI BItS s s 5 s s s i 6 5505 6808 5 508 5 585 505 4 505t 5 om0 0w ot o s o w2 0 a0 3 684
Transparency and Premultiplied Alphas 691
A Radial Gradient Brush. i, 696
Loading and Saving ImageFiles. 703
Posterize and Monochromize.................. 714
Saving Finger Paint Artwork i i 722
HSL Color Selection 747
Reverse Painting i 758
Accessing the Pictures Library 763
Capturing Camera Photosc.oooiiiiiii ... 772

Contents Vii

Chapter 15 Going Native 779

An Introductionto P/Invoke 780
SOME BN 556555 5s s mvs s s o0 v oo o o 900 5 97606 g 880 6 8 AF% ¥ 7% 1 99 8 § 1 ¢ 786
Time Zone Information 786
A Windows Runtime Component Wrapper for DirectX............... 808
B =Tel 0 1 (=F: Talo 1l] 1| N RN 809
Configurations and Platforms. o i 821
Interpreting Font Metrics. i 824
Drawing on a SurfacelmageSource., 831
Chapter 16 Rich Text 845
Private FONts 847
ATaste of Glyphs. 850
Font Filesin Local Storage. ...ttt 852
Typographical Enhancements.o, 856
RichTextBlock and Paragraphs, 858
RichTextBlock Selection 862
RichTextBlock and Overflow 862
The Perils of Pagination.......... i ... 870
Rich Editing with RichEditBoX 877
Your Own Text INput. 886
Chapter 17 Share and Print 893
Settings and Popups. 894
Sharing Through the Clipboard 898
The Share Charm. e 903
BESIC PRNMUING - ¢ s 5im sniw s im0 5 00 5,05 55.605 516 55555 555 808 5 ik = v mmom 0 904
Printable and Unprintable Margins................................ 911
The Pagination Processoiuiiiiiiiiiiiaaa .. 915
Custom Printing Properties.ooiiiiiiiiiiiiiaa. .. 922

viii Contents

Printing a Monthly Planner....................oooonn.
Printing a Range of Pages............. ...t
Where To Do the BigJobs?t

Printing FingerPaint Art........ i

Chapter 18 Sensors and GPS

Orientation and Orientation...........................
Acceleration, Force, Gravity, and Vectors................
Follow the RollingBallt
TheTwo Norths.covviiiiiiiiiiiii i,

Inclinometer = Accelerometer + Compass.

OrientationSensor = Accelerometer + Compass

Azimuth and Altitude.

Bing Maps and BingMap Tiles................

Chapter 19 Pen (Also Known as Stylus)

The InkManager Collections.
The Ink Drawing Attributes.
Erasing and Other Enhancements
Selecting Strokes. i

The Yellow Pad

Index

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning

resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Contents

ix

PART 1

Specialties

CHAPTER 13

CHAPTER 14

CHAPTER 15

CHAPTER 16

CHAPTER 17

CHAPTER 18

CHAPTER 19

Touch, EtC....covvviiiiiiiiii e 615
Bitmapscoviuiiiiiiiiiiiiiiiiieie 683
GoingNative........covviiiiiiiiiiiniinnnnn. 779
RiICh TEXt s o s wiois s siomos s wiers s 5w s 3 wnie s simw v 3 i 845
ShareandPrint...........cocovviiiiiaian.. 893
SensorsandGPS............oeiiiiiiiiin., 953
Pen (Also Known as Stylus).................. 1013

613

CHAPTER 13

Touch, Etc.

ne of the most forward-looking aspects of the Windows Runtime is the consolidation of touch,

mouse, and pen input. No longer is it necessary to add touch to an existing mouse-oriented
application, or add some mouse support to a touch application. From the very beginning, the pro-
grammer treats all these forms of input in a fairly interchangeable manner. In accordance with the
Windows Runtime programming interface, | will be using the word pointer to refer to input from
touch, mouse, and the pen (also known as the stylus) when it's not necessary to distinguish the actual
input device.

The best way to handle pointer input is through the existing Windows Runtime controls. As you've
seen, standard controls such as Button, Slider, ScrollViewer, and Thumb all respond to pointer input
and use that to deliver higher-level input to your application.

In some cases, however, the programmer needs to obtain actual pointer input, and for that
purpose UlElement defines three different families of events:

m Eight low-level events beginning with the word Pointer
m Five higher-level events beginning with the word Manipulation
m Tapped, RightTapped, DoubleTapped, and Holding events

The Control class supplements these events with virtual protected methods beginning with the word
On and followed by the event name.

To receive pointer input, a FrameworkElement derivative must have its IsHitTestVisible property set
to true and its Visibility property set to Visible. A Control derivative must have its IsEnabled property
set to true. The element must have some kind of graphical representation on the screen; a Panel
derivative can have a Transparent background but not a null background.

All these events are associated with the element that is underneath your finger or mouse or pen
at the time of the event. The only exception is when a pointer has been “captured” by an element, as
you'll see later in this chapter.

If you need to track individual fingers, you'll want to use the Pointer events. Each event is
accompanied by an ID number that uniquely identifies either an individual finger or pen touching
the screen, or the mouse or pen. In this chapter I'll demonstrate how to use Pointer events for a
finger-paint program and a piano keyboard (unfortunately without sound). Both these programs
obviously need to handle simultaneous input from multiple fingers.

615

In a sense, the Pointer events are the only events you need. For example, if you wish to implement
a feature that allows the user to stretch a photograph with two fingers, you can track Pointer events
for those two fingers and measure how far they’re moving apart. But calculations of this sort are pro-
vided for you in the Manipulation events. The Manipulation events consolidate multiple fingers into a
single action, and they're ideal for moving, stretching, pinching, and rotating visual objects.

For some applications you might be puzzled whether to use Pointer or Manipulation events. The
Manipulation events should probably be your first choice. Particularly if you think to yourself “I hope
the user's not going to start using a second finger because I'll just have to ignore it," you probably
want to use the Manipulation events. Then, if the user does use two or more fingers when only one
finger is necessary, the multiple fingers will be averaged.

However, you'll also discover that the Manipulation events have an intrinsic lag. A finger touching
the screen needs to move a bit before that finger is interpreted as contributing to a manipulation.
Manipulation events are not fired if a finger taps or holds. Sometimes this lag will be enough to
persuade you to use the Pointer events instead. The XYSlider custom control shown in this chapter
is a case in point. The version shown in this chapter is written with Manipulation events because it
wouldn’t know what to do with extra fingers. But the lag time is a definite problem, so | have another
version in Chapter 14, “Bitmaps,” that uses Pointer events.

Pointer events are generated on a window level by the CoreWindow object, and you can derive
Manipulation events on your own using the GestureRecognizer, but I'll be ignoring those facilities in
this chapter and sticking with the events defined by U/Element and the virtual methods defined by
Control. | also won't get into information about hardware input devices available from classes in the
Windows.Devices.Input namespace.

Input from the pen has some special considerations involving the selection, erasing, and storage of
pen strokes, as well as handwriting recognition. Those topics will be saved for Chapter 19, “Pen (Also
Known as Stylus).” The Microsoft Surface tablet introduced in October 2012 does not support pen
input.

A Pointer Roadmap

Of the eight Pointer events, five are very common. If you touch a finger to an enabled and visible
UlElement derivative, move it, and lift it, these five Pointer events are generated in the following
order:

m PointerEntered

m PointerPressed

m PointerMoved (multiple occurrences in the general case)
m PointerReleased

m PointerExited

616 PART 2 Specialties

A finger generates Pointer events only when the finger is touching the screen or when it has just been
removed. There is no such thing as "hover” with touch.

The mouse is a little different. The mouse generates PointerMoved events even without the mouse
button pressed. Suppose you move the mouse pointer to a particular element, press the button,
move the mouse some more, release the button, and then move the mouse off the element. The
element generates the following series of events:

m PointerEntered

m PointerMoved (multiple)
m PointerPressed

®m PointerMoved (multiple)
m PointerReleased

m PointerMoved (multiple)
m PointerExited

Multiple PointerPressed and PointerReleased events can also be generated if the user presses and
releases various mouse buttons.

Now let's try a pen. The element begins reacting to the pen before it actually touches the
screen, so you'll first see a PointerEntered event followed by PointerMoved. As the pen touches the
screen, a PointerPressed event is generated. Move the pen, and lift it. The element continues to fire
PointerMoved events after PointerReleased, but it culminates with a PointerExited when the pen is
moved farther away from the screen. It's the same sequence of events as the mouse.

When the user spins the mouse wheel, the following event is generated:
m PointerWheelChanged

The remaining two events are rarer:

m PointerCapturelost

m PointerCanceled

I'll discuss pointer capture later in this chapter, at which time the PointerCaptureLost event becomes
much more important.

I have never seen a PointerCanceled event even when I've unplugged the mouse from the
computer, but the event exists to report an error of that sort.

All these events are accompanied by an instance of PointerRoutedEventArgs, defined in the
Windows.Ul.Xaml.Input namespace. (Watch out: There's also a PointerEventArgs class in the
Windows.UI.Core namespace, but that’s used for the processing of pointer input on the window
level)) As the name of this class indicates, these Pointer events are all routed events that travel up
the visual tree.

CHAPTER 13 Touch, Etc. 617

PointerRoutedEventArgs defines two properties common for routed events:
m OriginalSource indicates the element that raised the event.
m Handled lets you stop further routing of the event up the visual tree.

Lots of other information is available from the PointerRoutedEventArgs object. The following
description covers only the highlights. The class also defines these members:

m Pointer property of type Pointer

m KeyModifiers property indicating the status of the Shift, Control, Menu (otherwise known as
Alt), and Windows keys

m GetCurrentPoint method that returns a PointerPoint object

Watch out: Already we're dealing with classes named Pointer (defined in the
Windows.Ul.Xaml.Input namespace) and PointerPoint (defined in Windows.Ul.Input).

The Pointer class has just four properties:

m Pointerld property is an unsigned integer identifying the mouse, or an individual finger or pen.
m PointerDeviceType is an enumeration value Touch, Mouse, or Pen.

m /sInRange is a bool that indicates whether the device is in range of the screen.

m /sInContact is a bool indicating whether the finger or pen is touching the screen, or whether
the mouse button is down.

The Pointerld property is extremely important. This is what you use to track the movement of
individual fingers. Almost always, a program that handles Pointer events will define a dictionary in
which this Pointerld property serves as a key.

The GetCurrentPoint method of PointerRoutedEventArgs sounds as if it returns the current
coordinate location of the pointer, and it does, except that it also provides a whole lot more.
Because it's convenient to get the location relative to a particular element, GetCurrentPoint accepts
an argument of type UlElement. The PointerPoint object returned from this method duplicates
some information from Pointer (the Pointerld and IsinContact properties) and provides some other
information:

m Position of type Point, the (x, y) location of the pointer at the time of the event
m Timestamp of type ulong
m Properties of type PointerPointProperties (defined in Windows.Ul.Input)

The Position property is always relative to the upper-left corner of the element you pass to the
GetCurrentPoint method.

PointerRoutedEventArgs also defines a method named GetIntermediatePoints that is similar to
GetCurrentPoint except that it returns a collection of PointerPoint objects. Very often this collection
has just one item—the same PointerPoint returned from GetCurrentPoint—but for the PointerMoved

618 PART 2 Specialties

event there could be more than one, particularly if the event handler isn't very fast. I've particularly
noticed GetintermediatePoints returning multiple PointerPoint objects on the Microsoft Surface.

The PointerPointProperties class defines 22 properties that provide detailed information about the
event, including which mouse buttons are pressed, whether the button on the pen barrel is pressed,
how the pen is tilted, the contact rectangle of the finger with the screen (if that's available), the
pressure of a finger or pen against the screen (if that's available), and MouseWheelDelta.

You can use as little or as much of this information as you need. Obviously, some of it will not be
applicable to every pointer device and will therefore have default values.

A First Dab at Finger Painting

Perhaps the archetypal multitouch application is one that lets you paint with your fingers on the
screen. You can write such a program handling just three Pointer events and examining just two
properties from the event arguments, but I'm afraid the result has a flaw not quite compensated for
by its simplicity.

The MainPage.xaml file of FingerPaintl simply provides a name for the standard Grid:

Project: FingerPaintl | File: MainPage.xaml (excerpt)
<Page ... >
<Grid Name="contentGrid"

Background="{StaticResource ApplicationPageBackgroundThemeBrush}" />
</Page>

The very first thing that the code-behind file does is define a Dictionary with a key of type uint.
| mentioned earlier that virtually every program that handles Pointer events has a Dictionary of this
sort. The type of the items you store in the Dictionary is dependent on the application; sometimes an
application will define a class or structure specifically for this purpose. In a rudimentary finger-painting
application, each finger touching the screen will be drawing a unique Polyline, so the Dictionary can
store that Polyline instance:

Project: FingerPaintl | File: MainPage.xaml.cs (excerpt)

public sealed partial class MainPage : Page
{
Dictionary<uint, Polyline> pointerDictionary = new Dictionary<uint, Polyline>(Q);
Random rand = new Random();
byte[] rgb = new byte[3];
public MainPage()
{
this.InitializeComponent();

}

protected override void OnPointerPressed(PointerRoutedEventArgs args)
{

// Get information from event arguments

uint id = args.Pointer.PointerId;

Point point = args.GetCurrentPoint(this).Position;

CHAPTER 13 Touch, Etc. 619

// Create random color
rand.NextBytes(rgb);
Color color = Color.FromArgb(255, rgb[0], rgb[1], rgb[2]);

// Create Polyline

Polyline polyline = new Polyline

{
Stroke = new SolidColorBrush(color),
StrokeThickness = 24,

};

polyline.Points.Add(point);

// Add to Grid
contentGrid.Children.Add(polyline);

// Add to dictionary
pointerDictionary.Add(id, polyline);
base.OnPointerPressed(args);

}
protected override void OnPointerMoved(PointerRoutedEventArgs args)
{
// Get information from event arguments
uint id = args.Pointer.PointerId;
Point point = args.GetCurrentPoint(this).Position;
// If ID is in dictionary, add the point to the Polyline
if (pointerDictionary.ContainsKey(id))
pointerDictionary[id].Points.Add(point);
base.OnPointerMoved(args);
}
protected override void OnPointerReleased(PointerRoutedEventArgs args)
{
// Get information from event arguments
uint id = args.Pointer.PointerId;
// If ID is 1in dictionary, remove it
if (pointerDictionary.ContainsKey(id))
pointerDictionary.Remove(id);
base.OnPointerReleased(args);
}

In the OnPointerPressed override, the program creates a Polyline and gives it a random color. The
first point is the location of the pointer. The Polyline is added to the Grid and also to the dictionary.

When subsequent OnPointerMoved calls occur, the Pointerld property identifies the finger, so the
particular Polyline associated with that finger can be accessed from the dictionary and the new Point
value can be added to the Polyline. Because it's the same instance as the Polyline in the Grid, the
on-screen object will seem to grow in length as the finger moves.

The OnPointerReleased processing simply removes the entry from the dictionary. That particular
Polyline is completed.

620 PART 2 Specialties

When you run the program, of course the first thing you'll want to do is sweep your whole hand
across the screen like the glaciers that created the Finger Lakes in upstate New York.

Each finger paints its own polyline as a single series of connected points of a particular color, and
you'll discover that you can use the mouse and pen as well.

I mentioned that this code has a flaw. The OnPointerMoved and OnPointerReleased overrides are
very careful to check that the particular ID exists as a key in the dictionary before using it to access
the dictionary. This is very important for mouse and pen processing because these devices generate
PointerMoved events prior to OnPointerPressed.

But try this: Put the program in a snap mode, and with your finger, draw a line that goes outside
the page and then back in.

CHAPTER 13 Touch, Etc. 621

Look at that straight line down the left side. That line is drawn when the finger reenters the page,
and it indicates that the program doesn't get PointerMoved events during the time the finger strays
outside. Try it with the mouse. Same thing.

Now try this: Using a finger, draw a line from the inside of the page to the outside and lift your
finger. Now use your finger to draw inside the page again. This seems to work OK.

Now try it with the mouse. Press the mouse button over the FingerPaintl page, move the mouse
to outside the page, and release the mouse button. Now move the mouse to the FingerPaintl page
again. The program continues to draw the line even with the mouse button released! This is obviously
wrong (but I'm sure you've seen programs that get “confused” like this). Now press the mouse button,
and you'll generate an exception when the OnPointerPressed method attempts to add an entry to the
dictionary using a key that already exists in the dictionary. Unlike touch or the pen, all mouse events
have the same ID.

Let's fix these problems.

Capturing the Pointer

To allow me (and you) to get a better sense of the sequence of Pointer events, | wrote a pro-

gram called PointerLog that logs all the Pointer events on the screen. The core of the program is a
UserControl called LoggerControl. The Grid in the LoggerControl.xaml file has been given a name but
is otherwise initially empty:

Project: PointerLog | File: LoggerControl.xaml (excerpt)

<UserControl ... >
<Grid Name="contentGrid" Background="Transparent" />
</UserControl>

The code-behind file has overrides of all eight Pointer methods, all of which call a method named
Log with the event name and event arguments. Like all Pointer programs, a Dictionary is defined, but
the values in this one are not simple objects. Instead, | defined a nested class named Pointerinfo right
at the top of the LoggerControl class for storing per-finger information in this dictionary.

Project: PointerLog | File: LoggerControl.xaml.cs (excerpt)

public sealed partial class LoggerControl : UserControl

{
class PointerInfo
{
public StackPanel stackPanel;
public string repeatEvent;
public TextBlock repeatTextBlock;
};

Dictionary<uint, PointerInfo> pointerDictionary = new Dictionary<uint, PointerInfo>();

622 PART 2 Specialties

