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PREFACE

The present volume is the second in the author’s series of
three dealing with abstract algebra. For an understanding of
this volume a certain familiarity with the basic concepts treated
in Volume I: groups, rings, fields, homomorphisms, is presup-
posed. However, we have tried to make this account of linear
algebra independent of a detailed knowledge of our first volume.
References to specific results are given occasionally but some of
the fundamental concepts needed have been treated again. In
short, it is hoped that this volume can be read with complete
understanding by any student who is mathematically sufficiently
mature and who has a familiarity with the standard notions of
modern algebra.

Our point of view in the present volume is basically the abstract
conceptual one. However, from time to time we have deviated
somewhat from this. Occasionally formal calculational methods
yield sharper results. Moreover, the results of linear algebra are
not an end in themselves but are essential tools for use in other
branches of mathematics and its applications. It is therefore
useful to have at hand methods which are constructive and which
can be applied in numerical problems. These methods sometimes
necessitate a somewhat lengthier discussion but we have felt that
their presentation is justified on the grounds indicated. A stu-
dent well versed in abstract algebra will undoubtedly observe
short cuts. Some of these have been indicated in footnotes.

We have included a large number of exercises in the text.
Many of these are simple numerical illustrations of the theory.
Others should be difficult enough to test the better students. At
any rate a diligent study of these is essential for a thorough un-
derstanding of the text.

vii
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At various stages in the writing of this book I have benefited
from the advice and criticism of many friends. Thanks are par-
ticularly due to A. H. Clifford, to G. Hochschild, and to I. Kap-
lansky for suggestions on earlier versions of the text. Also I am
greatly indebted to W. H. Mills, Jr. for painstaking help with the
proofs and for last minute suggestions for improvements of the
text.

N. J.
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Chapter 1

FINITE DIMENSIONAL VECTOR SPACES

In three-dimensional analytic geometry, vectors are defined geo-
metrically. The definition need not be recalled here. The im-
portant fact from the algebraic point of view is that a vector v
is completely determined by its three coordinates (¢, 7, {) (rela-
tive to a definite coordinate system). It is customary to indi-
cate this by writing v = (&, #, {), meaning thereby that v is the
vector whose x-, y-, and 2z-coordinates are, respectively, £, 7, and
¢. Conversely, any ordered triple of real numbers (£, #, {) de-
termines a definite vector. Thus there is a 1-1 correspondence
between vectors in 3-space and ordered triples of real numbers.

There are three fundamental operations on vectors in geometry:
addition of vectors, multiplication of vectors by scalars (numbers)
and the scalar product of vectors. Again, we need not recall the
geometric definitions of these compositions. It will suffice for our
purposes to describe the algebraic processes on the triples that
correspond to these geometric operations. If v = (¢, #, ¢) and
v = (¢, 1, '), then the sum

v+o =E+ 2+, ¢+
The product pv of the vector v by the real number p is the vector
pv = (p&, pn, pY)
and the scalar product (v, v") of v and ¢ is the real number
(v, ) = & + " + 5.

A substantial part of analytic geometry—the theory of linear

dependence and of linear transformations—depends only on the
1



2 ' FINITE DIMENSIONAL VECTOR SPACES

first two of these concepts. It is this part (in a generalized form)
which constitutes the main topic of discussion in these Lectures.
The concept of scalar product is a metric one, and this will be
relegated to a relatively minor role in our discussion.

The study of vectors relative to addition and multiplication
by numbers can be generalized in two directions. First, it is not
necessary to restrict oneself to the consideration of triples; in-
stead, one may consider n-tuples for any positive integer .
Second, it is not necessary to assume that the coordinates £, 7,

-+ are real numbers. To insure the validity of the theory of
linear dependence we need suppose only that it is possible to
perform rational operations. Thus any field can be used in place
of the field of real numbers. It is fairly easy to go one step fur-
ther, namely, to drop the assumption of commutativity of the
basic number system. .

We therefore begin our discussion with a given division ring A.
For example, A may be taken to be any one of the following sys-
tems: 1) the field of real numbers, 2) the field of complex num-
bers, 3) the field of rational numbers, 4) the field of residues
modulo p, or 5) the division ring of real quaternions.

Let n be a fixed positive integer and let A™ denote the to-
tality of n-tuples (£, £s, - - -, £.) with the £ in A. We call these
n-tuples vectors, and we call A™ the vector space of n-tuples over
A. Ify = (g, m2, -+, 1a), we regard x = y if and only if & = »;
fori =1,2, ---, n. Following the pattern of the three-dimen-
sional real case, we introduce two compositions in A™: addition
of vectors and multiplication of vectors by elements of A. First,
if x and y are arbitrary vectors, we define their sum x 4+ y to be
the vector

x+y=(El+7’l)£2+n2)"’)£n+ﬂn)-

As regards to multiplication by elements of A there are two possi-
bilities: left multiplication defined by

px = (PEI; pE2, - Psn)

and right multiplication defined by

xXp = (Elp: £2p) T Enp)-
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Either of these can be used. Parallel theories will result from the
two choices. In the sequel we give preference to left multiplica-
tion. It goes without saying that all of our results may be trans-
ferred to results on right multiplication.

The first eight chapters of this volume will be devoted to the
study of the systems A™ relative to the compositions we have
just defined. The treatment which we shall give will be an axio-
matic one in the sense that our results will all be derived from a
list of simple properties of the systems A(™ that will serve as
axioms. These axioms define the concept of a finite dimensional
(abstract) vector space and the systems A™ are instances of such
spaces. Moreover, as we shall see, any other instance of a finite
dimensional vector space is essentially equlvalent to one of the
systems A(™),

Thus the shift to the axiomatic point of view is not motivated
by the desire to gain generality. Its purposes are rather to clar-
ify the discussion by focusing attention on the essential proper-
ties of our systems, and to make it easier to apply the results to
other concrete instances. Finally, the broadening of the point
of view leads naturally to the consideration of other, more gen-
eral, concepts which will be useful in studying vector spaces.
The most important of these is the concept of a module which
will be our main tool in the theory of a single linear transforma-
tion (Chapter III). In order to prepare the ground for this ap-
plication we shall consider this concept from the beginning of our
discussion.

The present chapter will be devoted to laying the foundations
of the theory of vector spaces. The principal concepts that we
shall consider are those of basis, linear dependence, subspace,
factor space and the lattice of subspaces.

1. Abstract vector spaces. We now list the properties of the
compositions in A™ from which the whole theory of these sys-
tems will be derived. These are as follows:

Al W+ +z=x+@G+2.
A2 x+y=y+x

A3 There exists an element O such that ¥ + 0 = x for all x.
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A4 For any vector x there exists a vector —x such that x +

(—x) =0.
S1 alx +y) = ax + ay.
S2 (@ + B)x = ax + Bx.
S3 (aB)x = a(Bx).
S4 Ix = x.
F  There exist a finite number of vectors ¢;, €5, ---, e, such

that every vector can be written in one and only one way

in the form £, + &6 +- - -+ Enen.

The verifications of Al, A2, S1-S4 are immediate. We can
prove A3 by observing that (0, 0, - - -, 0) has the required prop-
erty and A4 by noting that, if x = (¢, ---, £,), then we can
take —x = (—#&;, -+, —&,). To prove F we choose for e;,

1
(1) e; = (0,0,---,0,1,0,---,0), i=1,2,---,n.

Then &e; has £; in its 7th place, 0’s elsewhere. Hence Z": ties =
1
(t1, £2, -+ -, £a). Hence if x = (&1, &, - -, £), then x can be

written as the “linear combination” Z¢;e; of the vectors e;. Also
our relation shows that, if Z¢.e; = Zn.e;, then (&1, &, -, £,) =
(71, M2, ** ", Ma) so that & = n; fori = 1,2, ---, n. This is what
is meant by the uniqueness assertion in F.

The properties A1-A4 state that A™ is a commutative group
under the composition of addition. The properties S1-S4 are
properties of the multiplication by elements of A and relations
between this composition and the addition composition. Prop-
erty F is the fundamental finiteness condition.

We shall now use these properties to define an abstract vector
space. By this we mean a system consisting of 1) a commutative
group N (composition written as +), 2) a division ring 4, 3) a
function defined for all the pairs (p, x), pin A, x in R, having values
px in R such that S1-S4 hold. In analogy with the geometric
case of n-tuples we call the elements of 9% vectors and the elements
of A scalars. In our discussion the emphasis will usually be placed
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on R. For this reason we shall also refer to i somewhat inex-
actly as a “vector space over the division ring A.” (Strictly
speaking R is only the group part of the vector space.) If F holds
in addition to the other assumptions, then we say that 0% is finite
dimensional, or that R possesses a finite basis over A.

The system consisting of A™ A; and the multiplication px de-
fined above is an example of a finite dimensional vector space.
We shall describe next a situation in the theory of rings which
gives rise to vector spaces. Let 9% be an arbitrary ring with an
identity element 1 and suppose that % contains a division sub-
ring A that contains 1. For the product px, p in A, and x in R
we take the ring product px. Then S1-S3 are consequences of
the distributive and associative laws of multiplication, and S4
holds since the identity element of A is the identity of %. Hence
the additive group %, the division ring A and the. multiplication
px constitute a vector space. This space may or may not be
finite dimensional. For example, if % is the field of complex
numbers and A is the subfield of real numbers, then % is finite
dimensional; for any complex number can be written in one and
only one way as ¢ + 7V —1 in terms of the “vectors” 1, V—-1.
Another example of this type is % = A[M], the polynomial ring
in the transcendental element (indeterminate) X with coefficients
in the division ring A. We shall see that this vector space is not
finite dimensional (see Exercise 1, p. 13). Similarly we can re-
gard the polynomial ring A[A;, Ng, - - -, \,] where the \; are alge-
braically independent (independent indeterminates) as a vector
space over A.

Other examples of vector spaces can be obtained as subspaces
of the spaces defined thus far. Let % be any vector space over
A and let © be a subset of % that is a subgroup and that is closed
under multiplication by elements of A. By this we mean that if
ye© and p 1s arbitrary in A then py e &. Then it is clear that
the trio consisting of &, A and the multiplication py is a vector
space; for, since S1-S4 hold in 9, it is obvious that they hold
also in the subset &. We call this a subspace of the given vector
space, and also we shall call & a subspace of ®. As an example,
let ® = A[A] and let © be the subset of polynomials of degree
<n. It is immediate that & is a subspace. Moreover, it is
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finite dimensional since any polynomial of degree <# can be ex-
pressed in one and only one way as a linear combination of the
polynomials 1, A, - - -, AL,

EXERCISE

1. Show that the totality & of homogeneous quadratic Ppolynomials
> aiiAi\j, a;j in A, is a finite dimensional subspace of A[\;, Aa).
3

2. Right vector spaces. As we have pointed out at the begin-
ning the system A of n-tuples can also be studied relative to
addition and to right multiplication by scalars. This leads us to
define the concept of a right vector space. By this we mean a
system consisting of a commutative group %', a division ring A
and a function of pairs (p, x'), pin A, x" in R’, having values x'p
in R’ and satisfying:

S1 (" + y)a = x'a+ ya

S2 x'(a+ B) = x'a + x'B.

S3 *'(af) = (x'a)B.

S’4 x'l = &’ for all " in R

Obviously the theory based on this definition will parallel that
of left vector spaces. It should be noted, however, that a right
space over A cannot be regarded as a left space over A if this
division ring is not commutative. For if we write ax’ for x'a,
then we have by S’3

(ef)x” = x'(aB) = (x'@)B = Blax’).
Hence S3: (Ba)x’ = B(ax’) holds only if
[(aB) — (B)]¥" =0

for all #’. This together with S4 implies that af = Ba for all «, 8.

On the other hand, let A’ be a division ring anti-isomorphic to
A and let @ — o be any anti-isomorphism of A onto A’. Then
if R’ is a right vector space over A, R’ may be considered a left



