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Preface

Laminated composites made of continuous fibers and metal, ceramic, or polymer
matrices have been used for structural applications for more than half a century.
Many modern industries such as aerospace engineering or wind power energy
engineering would not have advanced to their current levels if composites had not
been used. Among all of the superior characteristics of composites in comparison
with other more traditional, isotropic structural materials, three are the most well
known. They are high-specific stiffness (stiffness to mass ratio), high-specific
strength and the ability to tailor desired properties by choosing suitable fiber and
matrix materials as well as the fiber architecture geometry.

Determination of the composite mechanical properties has attracted the
attention of scientists, researchers and engineers. From an application point of
view, it would be best if all of the mechanical properties of the composites can be
estimated by using their constituent fiber and matrix properties and the fiber
architecture parameters, i.e., by using a micromechanical approach. For the
composite stiffness, this is feasible. There are many micromechanical models for
efficiently estimating the effective elastic properties of laminated composites,
which have been the focus of most of the available mechanics of composite
materials textbooks and monographs. A very challenging problem, however, is to
estimate the composite strength as well as other inelastic behaviors micro-
mechanically. In the current literature, there is a lack of a book systematically
addressing this problem. Almost all of the monographs dealing with laminate
strength follow a phenomenological philosophy. Namely, the laminate strength is
estimated based on the information of lamina strengths, which must be measured
on composites themselves. However, predicting laminate strength micromechanically
is very important, as one of the most critical issues in designing a composite
structure is to know its load carrying capacity in priori. Only when this capacity
has been explicitly related to the constituent properties and geometric parameters,
can an optimal design choosing proper constituent materials, fiber content and
architecture, and laminate layups for the structure before fabrication, be achieved.

Would it be possible to dream that any mechanical property, including the
ultimate load carrying capacity of a composite made using any continuous fiber
architecture subjected to arbitrary loads, would be simply available without any
experiment on it but be based only on an established database containing the
required constituent properties? Will this become a reality? More than a decade
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ago, the first author of this book established a unified micromechanical theory, the
bridging model, to describe the constitutive relationship of a composite up to the
point of failure. The unique feature of this theory is that the internal stresses in the
constituent fiber and matrix materials of the composite under any arbitrary load
conditions, including a temperature variation, can be evaluated using rigorous and
explicit equations. By assuming that a composite failure is caused by either the
fiber or the matrix failure, a micromechanical strength theory for the composite is
established. The last decade has seen sound development of the bridging model as
well as its applications to the analysis of mechanical properties, especially
strengths of various fibrous composites. The assessment by the World Wide
Failure Exercises (WWFE-I and WWFE-II, also known as “Failure Olympics” in
the composite community) has confirmed the efficiency and accuracy of this
model.

This book systematically deals with the bridging model development as well
as applications to strength prediction of unidirectional (UD) laminas and
multidirectional laminates. The model can be derived in terms of an Eshelby’s
tensor. Presented in Chapter 1 is the classical Eshelby’s problem as well as other
pre-requirements in mechanics and mathematics to understand the bridging model
theory and applications. Chapter 2 addresses a general elastic-plastic constitutive
theory, the Prandtl-Reuss theory, for isotropic materials. This theory is used to
describe the matrix behavior in a composite. Chapter 3 is the key to this book,
where the bridging model development is shown in detail. An interesting outcome
is that by making use of a bridging matrix, any micromechanical model for
predicting effective elastic moduli of a UD composite can be formulated into a
unified expression. In Chapter 4, the strength of UD composites is dealt with.
Closed-form formulae for strengths of a UD lamina under uniaxial loads are
derived. Modified maximum normal stress failure criteria for both multiaxial
tension and multiaxial compression of a constituent are set forth. Strengths at
elevated temperatures or subjected to fatigue loads are analyzed. Application of
the bridging model to predict the strength of multidirectional laminates subjected
to various load conditions is a main focus of this book, and is addressed in Chapter
5. Either the classical or a pseudo 3D laminate theory is incorporated with the
bridging model to determine the internal stresses in the fibers and matrix of the
laminate subjected to 2D or 3D load conditions. Fatal and nonfatal failures are
classified. In additional to a variety of strength prediction examples, the WWFE-I
and WWFE-II problems are analyzed with detailed discussions. The chapter ends
with the highlight of the simulation procedure for inelastic and strength properties
of woven, braided and knitted fabric reinforced composite laminates. The
analyzing formulae have been programmed into a computer routine in the
FORTRAN language, which is shown in Chapter 6. Supplymentary materials to
this book containing the original code of the computer routine can be found from
http://extra.springer.com. Input data for running the routine to resolve several
illustrated examples and to analyze the WWFE-I and WWFE-II problems are
included in the supplymentary materials.
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The book is intended for senior and postgraduate students in engineering. It
can be regarded as an extension to Strength/Mechanics of Materials textbooks.
Researchers and engineers who are working with composite materials will also
find this book useful. Any comment on the book can be sent to
huangzm@tongji.edu.cn or huangzm@email.com. The authors would like to
express their heartiest gratitude for any comments, in advance.

Zheng-Ming Huang
Ye-Xin Zhou
July,2011
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1

Background

1.1 Scope of This Book

It has been recognized that technological development depends on advances in the
field of materials. Whatever the field may be, the final limitations will rest on the
available materials. In some industries, conventional monolithic materials are
currently operating at or near their limits and do not offer the potential for meeting
the demands of further technical advancement (Lerch & Saltsman, 1993). In this
regard, composites represent nothing less than a giant step in the ever-lasting
endeavor to achieve optimisation of materials.

Composite materials are made on a macroscopic scale from two or more
distinct phases of constituent materials. They are developed to achieve unique
mechanical properties and other superior performance characteristics that would
be impossible with any of the constituent materials alone. As most practical
synthetic composites are essentially constructed from two-phase composite
components, we thus only need to focus on those composites having two distinct
constituent materials, a continuous phase and a reinforcement phase. The
continuous phase is commonly referred to as a matrix, which may be metal,
ceramic or polymer. The geometric form of the reinforcement phase can be
powders, particles, short fibers, whiskers or continuous fibers. Only continuous
fiber reinforced composites are considered in this book. Thus, the fiber reinforced
or, simply, the fibrous composites referred to throughout this book are considered
as those made from continuous fiber reinforcement. However, the continuous
fibers can be arranged in an arbitrary form, such as uni-/multi-directional, woven,
braided or knitted preforms.

Modern composites made using continuous fiber preforms and various types
of matrices have generated a revolution in high-performance structures in a
number of industries such as aerospace, shipbuilding, sports equipment,
automobile construction, energy, and so on. Advanced fibrous composites offer
significantly high stiffness and strength to weight ratios, compared to conventional
monolithic materials such as metallic materials. This is mainly because a material
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in very thin fiber form has a much higher mechanical performance than in its bulk
form (Griffith, 1920; Gordon, 1976). Another advantage of fibrous composites is
that people can freely select different constituent materials, their contents and their
arrangement for an optimum performance.

A fundamental issue in making use of a composite, the same as in the use of
any other material, is to understand thoroughly its mechanical properties,
especially its ultimate load-carrying capacity. Metals, polymers and ceramics are
essentially isotropic and homogenous, and have predictable properties. Hence,
material selection, component design and manufacturing are fairly straightforward.
On the other hand, composites essentially display anisotropic behaviors and their
mechanical responses are different if loaded in different directions. Not
surprisingly, the use of composites presents a whole new array of challenges for a
designer. The designer must deal with anisotropic materials in his component
design and understand how the properties of raw constituent materials, together
with the specifics of potential manufacturing methods (possible reinforcement
form and geometry, and relative proportions of fiber and matrix) will influence the
properties of the final product.

The purpose of this book is to provide a comprehensive methodology to
determine the mechanical behaviors, particularly the ultimate load-carrying
capacity of fibrous composites from the knowledge of their constituent properties,
volume fractions of the constituent materials, geometric arrangement of the
reinforcing phase in the matrix, the laminate stacking sequence, etc. The
composite forms considered include unidirectional laminae and multidirectional
laminates.

1.2 Linear Elasticity

In order to investigate the mechanical behaviors of a material, especially for
practical applications, stress and deformation analysis is necessary. The mechanics
of elasticity can be considered as the theoretical basis for estimating the elastic
stress and deformation of any solid structure or structural material under the action
of any general loading (Zhang, 2003). Basic assumptions and concepts of linear
elasticity will be briefly summarized here.

Two types of notations are used to designate rectangular coordinates of a point
in a material geometry. One is (x, y, z)-notation and another is (x;, x,, x3)-notation.
Usually, they refer to two different right-hand coordinate systems, the origins of
which may or may not coincide. As long as they refer to the same coordinate
system, it is always true that x,=x, x,=y, and x3=z.

When the material under consideration is subjected to some excitation, such as
an external load, the initial point P: (x;, x;, x3), will deform to a new point P'":
(x1tuy, x3tus, x3tus), as shown in Fig. 1.1, where wu;, u,, and wu; are the
displacement components of the point P along x;-, x,- and x;-directions,
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respectively. One of the fundamental assumptions for linear elasticity is that all of
the three displacement components, u,, u,, and u3, are infinitesimal. From these
displacement components, we get the infinitesimal strains of the point P as
(Timoshenko & Goodier, 1970)

1( ou, ou,

E,.}. =it B Cewane
2\ ox, o

Using these strain components, we can define a second-order strain tensor
(matrix) [&;], which has a dimension of 3x3. It is seen from Eq. (1.1) that the
strain tensor is symmetric. Only six of them are independent. Thus, instead of the
strain tensor, we can use a contracted strain vector, {&}, to represent the strain
state of the point P where

{&}Tz{&, &, &, &, &, &}={&n, &, &3, 263, 283, 2612} (1.2)
The superscript “T” in Eq. (1.2) denotes a transposition. Note that there is a factor
“2” before the shear strains, &3, &3, and &.

As the material has been subjected to the external load, stresses are generated.
Let [o;] denote a 3x3 stress tensor at the point P. By using an infinitesimal
volume element containing P and by applying equilibrium conditions, it can be
shown (Timoshenko & Goodier, 1970) that the stress tensor is always symmetric.
We can thus also use a contracted vector, {0;}, to represent the stress state of the
point P where

{O-I}T= {O-l’ O, 03’ O:h 0-5, o-fl}z{o-ll’ 022, 033’ 623’ ()-]3’ 0-12} (13)

» LJj=123 (1.1)

.
.
X3 P (x;+u,x,
+uy, Xy +us)

Fig. 1.1 Deformation of a material point

At any point P of the material, the elastic strain {&} is related to the stress {o}}
by Hooke’s law,

{&}=[Sl{ o} (1.4.1)
or

{oi}=1Cil{g} (1.4.2)
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where the 6x6 matrices [S;] and [C;] are named as compliance and stiffness
matrices of the material, respectively. Each can be obtained from inverting the
other, i.e.,

[Sy1=[Cy]™ (1.5.1)

[Cyl=[S]” (15.2)

When the deformation of the material is in an elastic range (i.e., all of the

displacement components, u,, #,, and u3, vanish if the external load is reduced to
zero), there is a strain energy function W such that

- iiq]eu (1.6)

1
W=—o¢€ =—
2 255 j=t
Here and in the following, a summation convention is applied to any repeated
subscripts, such as 7 and j in Eq. (1.6), in their variation range. Therefore,
ow ow

O, =—;0f § =— (1.7)
de, do,

The function W is always positive for any non-zero stress or strain tensor. This
means that the compliance and stiffness matrices, [S;] and [C;], are always
positive definite. From Eq. (1.7), we can further conclude that the matrices [S;]
and [Cj] are always symmetric because, after substituting Eq. (1.4.1) or Eq. (1.4.2)
into Eq. (1.6), the resulting function W is a quadratic equation and the coefficient
matrix of a quadratic can always be made to be symmetric. Hence, there are at
most 21 independent elastic constants for any material. If, however, the material
has some symmetric planes, i.e., the planes with respect to which the material
properties are the same, the number of the independent constants can be reduced
further (Timoshenko & Goodier, 1970). In engineering practice, there are three
kinds of materials that are most commonly encountered. They are isotropic,
transversely isotropic and orthotropic materials.

1.2.1 Isotropic Material

If the material is symmetric with respect to every direction, it is said to be
isotropic. Most metals, ceramics and polymers are isotropic materials. In general,
matrix materials used in composite fabrication are essentially taken as isotropic.
For this kind of material, there are only two independent elastic constants. They
are usually given in terms of engineering moduli, i.e., Young’s modulus, E, and
Poisson’s ratio, v. Young’s modulus is defined as the slope of a uniaxial stress-
strain curve of the material at an initial stage, whereas the Poisson’s ratio is
defined as the negative of the ratio of the transverse strain over the longitudinal
strain when a testing load is applied in the longitudinal direction. The compliance
matrix, [Sj], of an isotropic material takes the form
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s
S0 s

where [S;], and [S;]; are the sub-matrices of the compliance relating normal
stresses with elongation strains and shear stresses with shear strains, respectively,
and are given by

(1.8)

[ 1 v v
E
1 v
[S, 1, = —_— (1.9)
\ E E
1
symmetry ——
E -
{ =
— 0 0
G
1
[S,1, = — 0 (1.10)
G
1
symmetry ——
b G -
In Eq. (1.10), G is the shear modulus defined as
G=0.5E/(1+V) (1.11)

1.2.2 Transversely Isotropic Material

A material is said to be transversely isotropic if its elastic properties are kept
unchanged with respect to an arbitrary rotation around a given axis. For
convenience of illustration, this axis is called the symmetric axis (or direction).
Such a kind of material is of special importance in the study of fibrous composites,
since a unidirectional (abbreviated to “UD”) composite, the most important
fibrous composite, is generally considered as transversely isotropic. When fibers
are uniformly arranged in the matrix in such a way that the axes of the fibers are
parallel to each other, the material is said to be an unidirectionally fiber-reinforced
composite. A UD composite is also called a UD lamina. Fig. 1.2 shows a high-
contrast micrograph of the transverse plane section of such a boron fiber-
aluminium matrix composite. The dark dots represent the cross-sections of the
boron fibers and the white area designates the continuous aluminium matrix. From



6 1 Background

the figure, it can be easily concluded that the material properties are best
considered as invariant (symmetric) with respect to any rotation about the fiber
axis, since both the boron and the aluminium are isotropic. A further conclusion is
that the resulting composite is still transversely isotropic even if the fiber material
is transversely isotropic but has a symmetric direction along the fiber axis. This is
important because a number of commonly used fibers such as graphite, carbon and
aramid (Kevlar) are transversely isotropic.

IO
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Fig. 1.2 A micrograph of the cross-sectional plane of a UD composite. The black dots are
fibers and the white continuum is the matrix

For a transversely isotropic material, let its symmetric axis (the fiber axis in a
UD composite) be x;. The compliance matrix of the material is the same as that
given by Eq. (1.8) but with different sub-matrices, which read

I l VIZ VIZ ]
1 V.,
[S,1, = — == (1.12)
EZZ E22
symmetry = ——
- EZZ -
- _
— 0 0
G,
1
[S,1, = — 0 (1.13)
Gl]
1
symmetry ———




