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PREFACE

The purpose of Modern Mathematical Methods for Physicists and Engineers is to help grad-
uate and advanced undergraduate students of the physical sciences and engineering acquire
a sufficient mathematical background to make intelligent use of modern computational and
analytical methods. This book responds to my students’ repeated requests for a mathematical
methods text with a modern point of view and choice of topics.

For the past fifteen years [ have taught graduate courses in computational and mathematical
physics. Before introducing the course on which this book is based, I found it necessary, in
courses ranging from numerical methods to the applications of group theory in physics, to
summarize the rudiments of linear algebra and functional analysis before proceeding to the
ostensible subjects of the course. The questions of the students who studied early drafts of this
work have helped to shape the presentation. Some students working concurrently in nearby
telecommunication, semiconductor, or aerospace, industries have contributed significantly
to the substance of portions of the book.

The following is an example of the situations that motivated me to take the time to
write a mathematical methods text that breaks significantly with the past: Every semester,
students come to my office, puzzled over numerical models in which minor changes in the
data produce drastic changes in the outputs. Unfortunately most of these students lack the
mathematical background needed to conceptualize some of the most common problems of
numerical computation. For an engineer, and for the increasingly large fraction of physics
graduates who make careers in numerical modeling or electrical engineering, conceptual
understanding of analytical and numerical models is an absolutely essential ingredient of
successful designs. A computer can be a tool for understanding, and not merely a means
for obtaining a numerical answer of unknown reliability and significance, only in the hands
of those who understand the foundations and potential shortcomings of numerical methods.
Yet the traditional mathematical methods taught to students in engineering and physics for
most of the twentieth century do not provide a sufficient background even for introductory
graduate texts on many important contemporary topics, of which numerical computation is
only one.

What upper-level undergraduate and first-year graduate students in physics and engineer-
ing tend consistently to lack is an understanding of basic mathematical structures — groups,
rings, fields, and vector spaces — and of mappings that preserve these structures. In times
gone by, students learned mathematical structures though intensive practice with examples.
However, in curricula that already are under fire for taking too many years, there simply is
no time to learn the language of mathematics by example. Like adults who learn grammar in

xix
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order to accelerate the acquisition of a foreign language, contemporary students in physics
or engineering can more easily acquire a durable understanding of applied and numerical
mathematics if they have been exposed to the most essential formal mathematical structures.

The core of Modern Mathematical Methods for Physicists and Engineers is linear algebra
and basic functional analysis. Computation is the subject of two of the first three chapters
because computational examples and exercises occur throughout the book. Chapters on sets
and groups, rings and fields provide necessary background for subsequent chapters on vector
spaces, inner-product spaces, linear mappings, and matrix representations of finite groups.
Group-throry concepts provide an approach to partial differential equations and special func-
tions based on algebra instead of complex analysis. Throughout the book, abstraction is not
an end in itself, but a means for students to remember concepts and use them intelligently.

The exercises range in difficulty from simple applications of the definitions in the text
to problems that may challenge strong students. In both the text and the exercises, asterisks
indicate material that is unusually difficult, and that may be omitted on a first reading.

The manuscript for this book was created in LaTeX on a Macintosh Power Book® using
the program Textures®. The illustrations were created using Adobe Illustrator®.

1 thank all those who have contributed to this book, especially my students. Special thanks
are due to Professors William J. Pervin and Poras Balsara, and to Dawn Hollenbeck, for their
valuable comments on portions of the manuscript.



MODERN MATHEMATICAL METHODS FOR
PHYSICISTS AND ENGINEERS

The advent of powerful desktop computers has revolutionized scientific analysis and
engineering design in fields as disparate as particle physics and telecommunications.
Modern Mathematical Methods for Physicists and Engineers provides an up-to-date
mathematical and computational education for students, researchers, and practicing
engineers.

The author begins with a review of computation and then deals with a range of
key concepts including sets, fields, matrix theory, and vector spaces. He then goes on
to cover more advanced subjects such as linear mappings, group theory, and special
functions. Throughout, he concentrates exclusively on the most important topics for the
working physical scientist or engineer, with the aim of helping them to make intelligent
use of the latest computational and analytical methods.

The book contains well over 400 homework problems and covers many topics not
dealt with in other textbooks. It will be an ideal textbook for senior undergraduate
and graduate students in the physical sciences and engineering, as well as a valuable
reference for working engineers.

C. D. Cantrell received his Ph.D. from Princeton University in 1968. He taught at
Swarthmore College from 1967 until 1973 and was a staff member at the Los Alamos
National Laboratory from 1973 until 1979. Since then he has been at the University
of Texas at Dallas, where he is Professor of Physics and Electrical Engineering, and
Director of the Photonic Technology and Engineering Center. Professor Cantrell is a
consultant for Alcatel USA and Ericsson and is a Fellow of the American Physical
Society, the Optical Society of America, and the IEEE.
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