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Preface to the Second Edition

The second edition builds on the first in several ways. There are three new chapters
which survey recent directions and extensions of the theory, and there are two new
appendices. Then there are numerous additions to the original text. For example, a
very elementary addition is another parametrization which the author learned from
Don Zagier y2 = x* — 3ax + 2 of the basic cubic equation. This parametrization
is useful for a detailed description of elliptic curves over the real numbers.

The three new chapters are Chapters 18, 19, and 20. Chapter 18, on Fermat’s Last
Theorem, is designed to point out which material in the earlier chapters is relevant
as background for reading Wiles' paper on the subject together with further devel-
opments by Taylor and Diamond. The statement which we call the modular curve
conjecture has a long history associated with Shimura, Taniyama, and Weil over the
last fifty years. Its relation to Fermat, starting with the clever observation of Frey
ending in the complete proof by Ribet with many contributions of Serre, was already
mentioned in the first edition. The proof for a broad class of curves by Wiles was suf-
ficient to establish Fermat’s last theorem. Chapter 18 is an introduction to the papers
on the modular curve conjecture and some indication of the proof.

Chapter 19 is an introduction to K3 surfaces and the higher dimensional Calabi-
Yau manifolds. One of the motivations for producing the second edition was the
utility of the first edition for people considering examples of fibrings of three dimen-
sional Calabi-Yau varieties. Abelian varieties form one class of generalizations of
elliptic curves to higher dimensions, and K3 surfaces and general Calabi—Yau mani-
folds constitute a second class.

Chapter 20 is an extension of earlier material on families of elliptic curves where
the family itself is considered as a higher dimensional variety fibered by elliptic
curves. The first two cases are one dimensional parameter spaces where the family is
two dimensional, hence a surface two dimensional surface parameter spaces where
the family is three dimensional. There is the question of, given a surface or a three
dimensional variety, does it admit a fibration by elliptic curves with a finite number
of exceptional singular fibres. This question can be taken as the point of departure
for the Enriques classification of surfaces.



viii Preface to the Second Edition

There are three new appendices, one by Stefan Theisen on the role of Calabi—
Yau manifolds in string theory and one by Otto Forster on the use of elliptic curves
in computing theory and coding theory. In the third appendix we discuss the role of
elliptic curves in homotopy theory. In these three introductions the reader can get a
clue to the far-reaching implications of the theory of elliptic curves in mathematical
sciences.

During the final production of this edition, the ICM 2002 manuscript of Mike
Hopkins became available. This report outlines the role of elliptic curves in homo-
topy theory. Elliptic curves appear in the form of the Weierstasse equation and its
related changes of variable. The equations and the changes of variable are coded in
an algebraic structure called a Hopf algebroid, and this Hopf algebroid is related to
a cohomology theory called topological modular forms. Hopkins and his coworkers
have used this theory in several directions, one being the explanation of elements
in stable homotopy up to degree 60. In the third appendix we explain how what we
described in Chapter 3 leads to the Weierstrass Hopf algebroid making a link with
Hopkins’ paper.

Max-Planck-Institut fiir Mathematik Dale Husemoller
Bonn, Germany



Preface to the First Edition

The book divides naturally into several parts according to the level of the material,
the background required of the reader, and the style of presentation with respect to
details of proofs. For example, the first part, to Chapter 6, is undergraduate in level,
the second part requires a background in Galois theory and the third some complex
analysis, while the last parts, from Chapter 12 on, are mostly at graduate level. A
general outline of much of the material can be found in Tate’s colloquium lectures
reproduced as an article in /nventiones [1974].

The first part grew out of Tate’s 1961 Haverford Philips Lectures as an attempt to
write something for publication closely related to the original Tate notes which were
more or less taken from the tape recording of the lectures themselves. This includes
parts of the Introduction and the first six chapters. The aim of this part is to prove,
by elementary methods, the Mordell theorem on the finite generation of the rational
points on elliptic curves defined over the rational numbers.

In 1970 Tate returned to Haverford to give again, in revised form, the original
lectures of 1961 and to extend the material so that it would be suitable for publication.
This led to a broader plan for the book.

The second part, consisting of Chapters 7 and 8, recasts the arguments used in
the proof of the Mordell theorem into the context of Galois cohomology and descent
theory. The background material in Galois theory that is required is surveyed at the
beginnng of Chapter 7 for the convenience of the reader.

The third part, consisting of Chapters 9, 10, and 11, is on analytic theory. A
background in complex analysis is assumed and in Chapter 10 elementary results on
p-adic fields, some of which were introduced in Chapter 5, are used in our discus-
sion of Tate’s theory of p-adic theta functions. This section is based on Tate’s 1972
Haverford Philips Lectures.

Max-Planck-Institut fiir Mathematik Dale Husemoller
Bonn, Germany
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