= |11

SR AMEEA

(] Maurice Herlihy Nir Shavit %

(W - FHxH)

|
oM T b ORR i

China Machine Press

Tk REBIER

REVISED FIRST EDITION

THE ART
()/
MULTIPROCESSOR
PROGRAMMING

000000
RABBEA

Lo Sird // T Ml e veesdon

T rogranmnig (Revised Fist Ediion)

Maurice Herlihy ¢ Nir Shavit

Maurice Herlihy Nir Shavit
(%) H K FER TR &

@mm‘lﬂkﬂj}ﬁ’}i

China Machine Press

BEBEMmHB (CIP) HiF

ZALHE AR A (SR - f81TR) / (3E) BRI (Herlihy, ML), (38) i {EFF (Shavit, N.) # .
—Abnt: U Tk RREL, 201300

(LB R 514)

F 4G The Art of Multiprocessor Programming, Revised First Edition

ISBN 978-7-111-41233-5
L% ILQ@ ff @l LA - U7 - 90 V. TP332
TR IR A 1545 CIP #dliAZ = (2013) 25 012568 +5

REALERE « B3R
R K5 4R34 A K
AdkAREE AL WA AP F AT

AHEBNEIZS: B=F: 01-2012-7894

The Art of Multiprocessor Programming, Revised First Edition

Maurice Herlihy and Nir Shavit

ISBN: 978-0-12-397337-5

Copyright © 2012 by Elsevier Inc. All rights reserved.

Authorized English language reprint edition published by the Proprictor.

Copyright © 2013 by Elsevier (Singapore) Pte Ltd. All rights reserved.

Elsevier (Singapore) Pte Ltd.

3 Killiney Road

#08-01 Winsland House 1

Singapore 239519

Tel: (65) 6349-0200

Fax: (65) 6733-1817

First Published 2013

Printed in China by China Machine Press under special arrangement with Elsevier (Singapore) Pte Ltd.
This edition is authorized for sale in China only, excluding Hong Kong SAR, Macau SAR and Taiwan.

Unauthorized export of this edition is a violation of the Copyright Act. Violation of this Law is subject
to Civil and Criminal Penalties.

A B HINR (R Elsevier (Singapore) Pte Ltd. #AAIUAR Tl Hi R #b 28 i Bl B 54"%5 '/QT/J N
W AR A TR S AN G A SR BIATIUX . 81 TEE BIATIEX R &5 PEHBIX)t M AR R4S K28
B2, OB EERGE, B R

AR HIRMG AT Elsevieri PR, JohR%E HATFH .

BUBE Tk R Al CAE SR bk X T)5 A K fl225 MBS E4 S 100037)
PR T SENIECITE o

A 5T F AL A7 R 2 o] CL A

2003120 &5 1 a5 1 i)

170mm % 242mm « 335K

Frfdsty . ISBN 978-7-111-41233-5

EM: 79.000C

R RS, AT B, KR, bR L TR
FIRMALL: (010) 88378991 88361066 AL . (010) 88379604
B F M (010) 68326294 88379649 68995259 ik H 43 4. hzjsj@hzbook.com

HhRE BNE

XER LB, KRR R P B ARG, (57805 B K AE A AR
FHIEA TR [RS hIE R XA SE, [EXEEREBRAKRIIAN %
i AFEL . MOUAE, g, EEP LSS BE Fblok sk 5 # Hh 4
&, HEILFER AT 2R WAL R SR BCE R RATZ, Bbm e AL M FHE
FE, AOUEER TRERRITERE, BN T FEAREE, MEEE AL, XAFREED
P, HOHEHA S HE AR ER .

A, E2REEBMARMHEZ T, REMREN LA RRE, ML LAAE
kA EEY), XA ENEE R RS, tagdkik, %l B IREK
Hikes AR RRE, EREEBHARREMBEEMIRT, XEFLESERELLT
BHLEHER RO HERBIEME RIS BEM AT ZEREEZL. Bk, slE—#t
E SMEFE T BALEA B R E U ENLEE S r R BRI HE S 1E R, o S5k
B, BIREENHR KK FHLHZHE,

HLAE Tolk H AR AL AR T A AR R IRE] “HREABFIRS ™. A 1998 F£IF4h, KA
SRR VRS AR Tttt . BBIRESIMES Ebt . 2 L ENAME S, K15 Pearson,
McGraw-Hill, Elsevier, MIT, John Wiley & Sons, Cengage % it 5 2 £ i ik &8 =] & °r
TRIFWAEERXRZR, MBITIELA M E H FhZ#f o B L H Andrew S. Tanenbaum, Bjarne
Stroustrup, Brain W. Kernighan, Dennis Ritchie, Jim Gray, Afred V. Aho, John E. Hopcroft,
Jeffrey D. Ullman, Abraham Silberschatz, William Stallings, Donald E. Knuth, John L.
Hennessy, Larry L. Peterson % KUl &K —#H L 8IES, LA “THEYEIENE” A EFRE
MR, fEEES] RERER. KEASCEMNHEE, WEAB X ENSH SR,

“UEHEHAEANS R TES S TENIMEERR DD, ENLERAERM 1
HEREBITE S, AR AR TR SRR T s R BRIEE AR 2 e K
s fE ERIERE, ARESRAKBHIPERER. &4, "HREIREAE" E28MR 1
EAREA RN, XEPEERE PR TREFPWOME, HEF2aREALEXNEM S
ZEE, KR “SHRRASET 1EA Ik 5 th SR R £ SCHEBUE BUE AR R A .

BBHITER . SRIEH . —RIFEE. HROER. BEPREE, XeREHER
MEBA 7REMRIE. BEE TR SEAR % 7 P R A A o8 5 8ot S i
EEEI, HE R E M RYLEA TR R A AR B, A0 H AR
RERE, MiRKEBEHELERBALERX LR IR EERB), L5 w000 Mz
AR TAERR IS THIE, BAMAVBRRGENT

£ ZEM L. www.hzbook.com

B F R4 . hzjsj@hzbook.com

BERBIE. (010) 88379604

BRI, X THREEFTAHE 1S
ERBIZRES: 100037

T TCET T SN

This book offers complete code for all the examples, as well as
slides, updates, and other useful tools on its companion web page
at: http://store.elsevier.com/product.jsp?isbn=9780123973375

Preface

This book is intended to serve both as a textbook for a senior-level undergraduate
course, and as a reference for practitioners.

Readers should know enough discrete mathematics to understand “big-O”
notation, and what it means for a problem to be NP-complete. It is helpful to
be familiar with elementary systems constructs such as processors, threads, and
caches. A basic understanding of Java is needed to follow the examples. (We
explain advanced language features before using them.) Two appendixes summa-
rize what the reader needs to know: Appendix A covers programming language
constructs, and Appendix B covers multiprocessor hardware architectures.

The first third covers the principles of concurrent programming, showing how
to think like a concurrent programmer. Like many other skills such as driving a
car, cooking a meal, or appreciating caviar, thinking concurrently requires cul-
tivation, but it can be learned with moderate effort. Readers who want to start
programming right away may skip most of this section, but should still read
Chapters 2 and 3 which cover the basic ideas necessary to understand the rest
of the book.

We first look at the classic mutual exclusion problem (Chapter 2). This chap-
ter is essential for understanding why concurrent programming is a challenge. It
covers basic concepts such as fairness and deadlock. We then ask what it means
for a concurrent program to be correct (Chapter 3). We consider several alter-
native conditions, and the circumstances one might want to use each one. We
examine the properties of shared memory essential to concurrent computation
(Chapter 4), and we look at the kinds of synchronization primitives needed to
implement highly concurrent data structures (Chapters 5 and 6).

We think it is essential that anyone who wants to become truly skilled in the
art of multiprocessor programming spend time solving the problems presented
in the first part of this book. Although these problems are idealized, they distill

vi

Preface

the kind of thinking necessary to write effective multiprocessor programs. Most
important, they distill the style of thinking necessary to avoid the common mis-
takes committed by nearly all novice programmers when they first encounter
concurrency.

The next two-thirds describe the practice of concurrent programming. Each
chapter has a secondary theme, illustrating either a particular programming pat-
tern or algorithmic technique. At the level of systems and languages, Chapter 7
covers spin locks and contention. This chapter introduces the importance of
the underlying architecture, since spin lock performance cannot be understood
without understanding the multiprocessor memory hierarchy. Chapter 8 covers
monitor locks and waiting, a common synchronization idiom, especially in Java.
Chapter 16 covers work-stealing and parallelism, and Chapter 17 describes bar-
riers, all of which are useful for structuring concurrent applications.

Other chapters cover concurrent data structures. All these chapters depend
on Chapter 9, and the reader should read this chapter before reading the others.
Linked lists illustrate different kinds of synchronization patterns, ranging from
coarse-grained locking, to fine-grained locking, to lock-free structures (Chap-
ter 9). The FIFO queues illustrate the ABA synchronization hazard that arises
when using atomic synchronization primitives (Chapter 10), Stacks illustrate an
important synchronization pattern called elimination (Chapter 11), Hash maps
show how an algorithm can exploit natural parallelism (Chapter 13), Skip lists
illustrate efficient parallel search (Chapter 14), and priority queues illustrate
how one can sometimes weaken correctness guarantees to enhance performance
(Chapter 15).

Finally, Chapter 18 describes the emerging transactional approach to concur-
rency, which we believe will become increasingly important in the near future.

The importance of concurrency has not always been acknowledged. Here is

a quote from a 1989 New York Times article on new operating systems for the
IBM PC:

Real concurrency—in which one program actually continues to function while
you call up and use another—is more amazing but of small use to the average
person. How many programs do you have that take more than a few seconds to
perform any task?

Read this book, and decide for yourself.

Acknowledgments

We would like to thank Doug Lea, Michael Scott, Ron Rivest, Tom Corman, Radia
Perlman, George Varghese and Michael Sipser for their help in finding the right
publication venue for our book.

We thank all the students, colleagues, and friends who read our draft chapters
and sent us endless lists of comments and ideas: Yehuda Afek, Shai Ber, Mar-
tin Buchholz, Vladimir Budovsky, Christian Cachin, Cliff Click, Yoav Cohen,
Dave Dice, Alexandra Fedorova, Pascal Felber, Christof Fetzer, Shafi Goldwasser,
Rachid Guerraoui, Tim Harris, Danny Hendler, Maor Hizkiev, Eric Koskinen,
Christos Kozyrakis, Edya Ladan, Doug Lea, Oren Lederman, Pierre Leone, Yossi
Lev, Wei Lu, Victor Luchangco, Virendra Marathe, Kevin Marth, John Mellor-
Crummey, Mark Moir, Dan Nussbaum, Kiran Pamnany, Ben Pere, Torvald
Riegel, Vijay Saraswat, Bill Scherer, Warren Schudy, Michael Scott, Ori Shalev,
Marc Shapiro, Yotam Soen, Ralf Suckow, Seth Syberg, Alex Weiss, and Zhenyuan
Zhao. We apologize for any names inadvertently omitted.

We thank Mark Moir, Steve Heller, and our colleagues in the Scalable Syn-
chronization group at Sun Microsystems for their incredible support during the
writing of the book.

Thanks to all who have sent us errata to improve this book, including:
Rajeev Alur, Matthew Allen, Karolos Antoniadis, Cristina Basescu, Liran Bar-
sisa, Igor Berman, Konstantin Boudnik, Bjoern Brandenburg, Martin Buch-
holz, Kyle Cackett, Mario Calha, Michael Champigny, Neill Clift, Eran Cohen,
Daniel B. Curtis, Gil Danziger, Venkat Dhinakaran, David Dice, Wan Fokkink,
David Fort, Robert P. Goddard, Brian Goetz, Bart Golsteijn, K. Gopinath, Enes
Goktas, Jason T. Greene, Dan Grossman, Tim Halloran, Muhammad Amber
Hassaan, Matt Hayes, Francis Hools, Ben Horowitz, Barak Itkin, Paulo Jan-
otti, Kyungho Jeon, Ahmed Khademzadeh, Irena Karlinsky, Habib Khan, Omar

viii

Acknowledgments

Khan, Namhyung Kim, Guy Korland, Sergey Kotov, Doug Lea, Yossi Lev, Adam
MacBeth, Kevin Marth, Adam Morrison, Adam Weinstock, Mike Maloney, Tim
Mclver, Sergejs Melderis, Bartosz Milewski, Mark Moir, Adam Morrison, Vic-
tor Luchangco, Jose Pedro Oliveira, Dale Parson, Jonathan Perry, Amir Pnueli,
Pat Quillen, Binoy Ravindran, Roei Raviv, Sudarshan Raghunathan, Jean-Paul
Rigault, Michael Rueppel, Mohamed M. Saad, Assaf Schuster, Marc Shapiro,
Nathar Shah, Huang-Ti Shih, Joseph P. Skudlarek, James Stout, Mark Sum-
merfield, Deqing Sun, Seth Syberg, Fuad Tabba, Binil Thomas, John A Trono,
Thomas Weibel, Adam Weinstock, Jacheon Yi, Zhenyuan Zhao, Ruiwen Zuo,
Chong Xing.

Suggested Ways to Teach
the Art of Multiprocessor
Programming

Preface

The following are three possible tracks to teaching a multiprocessor program-
ming course using the material in the book.

The first track is a short course for practitioners who are interested in tech-
niques that can be applied directly to problems at hand.

The second track is a longer course for students who are not Computer Science
majors, but who are interested in learning the basics of multiprocessor program-
ming, as well as techniques likely to be useful in their own areas.

The third track is a semester-long course for Computer Science majors, either
upper-level undergraduates or graduate students.

Practitioner Track

Cover Chapter 1, emphasizing Amdahl’s law and its implications. In Chapter 2,
cover sections 2.1, 2.2, 2.3, and 2.6. Mention the implications of the impossibility
proofs in Section 2.8. In Chapter 3, skip Sections 3.3 and 3.6.

Cover Chapter 7, except for Sections 7.7 and 7.8. Chapter 8, which deals mon-
itors and reentrant locks, may be familiar to some practitioners. Skip Section 8.5
on Semaphores.

Cover Chapters 9, 10, except for 10.7, and Sections 11.1 and 11.2. Skip the
material in Sections 11.3 and onwards. Skip Chapter 12.

Cover Chapters 13 and 14. Skip Chapter 15. Cover Chapter 16, except for Sec-
tion 16.5. In Chapter 17, teach sections 17.1-17.3.

X

Suggested Ways to Teach

Non-CS Major Track

Cover Chapter 1, emphasizing Amdahl’s law and its implications. In Chapter 2,
cover sections 2.1, 2.2, 2.3, 2.5, and 2.6. Mention the implications of the impossi-
bility proofs in Section 2.8. In Chapter 3 skip Section 3.6.

Cover the material in Sections 4.1 and 4.2, and Chapter 5. Mention the uni-
versality of consensus, but skip Chapter 6.

Cover Chapter 7, except for Sections 7.7 and 7.8. Cover Chapter 8.

Cover Chapters 9, 10, except for 10.7, and Chapter 11. Skip Chapter 12.

Cover Chapters 13 and 14. Skip Chapter 15. Cover Chapter 16. In Chapter 17,
teach sections 17.1-17.3. Cover Chapter 18.

CS Major Track

The slides on the companion page were developed for a semester-long course

Cover Chapters 1 and 2 (Section 2.7 is optional) and 3. (Section 3.6 is
optional). Cover Chapters 4, 5, and 6. Before starting Chapter 7, it may be useful
to review basic multiprocessor architecture (Appendix B).

Cover Chapter 7 (Sections 7.7 and 7.8 are optional). Cover Chapter 8 if
your students are unfamiliar with Java monitors. Cover Chapters 9 and 10
(Section 10.7 optional). Cover Chapters 11, 12 (Sections 12.7, 12.8, and 12.9
are optional), 13, and 14. Chapter 15 is optional. Cover Chapters 16 and 17.
Chapter 18 is optional.

Contents

Preface \
Acknowledgments vii

Suggested Ways to Teach the Art of Multiprocessor
Programming ix

I Introduction |

I.1 Shared Objects and Synchronization 3
1.2 A Fable 6
|.2.1 Properties of Mutual Exclusion 8
1.2.2 The Moral 9
1.3 The Producer—Consumer Problem 10
.4 The Readers—Writers Problem 12
1.5 The Harsh Realities of Parallelization 13
1.6 Parallel Programming 15
I.7 Chapter Notes 15
|.8 Exercises 16
PRINCIPLES 19
2 Mutual Exclusion 21

2.1 Time 21

xii Contents

22
23

24
2.5
26
2.7
28
2.9
2.10

Critical Sections

2-Thread Solutions

2.3.1 The LockOne Class
2.3.2 The LockTwo Class
2.3.3 The Peterson Lock

The Filter Lock
Fairness
Lamport’s Bakery Algorithm

Bounded Timestamps

Lower Bounds on the Number of Locations

Chapter Notes

Exercises

3 Concurrent Objects

3.1
3.2
33

34

35

3.6

37

38

Concurrency and Correctness
Sequential Objects

Quiescent Consistency
3.3.1 Remarks

Sequential Consistency
34.1 Remarks

Linearizability
3.5.1 Linearization Points
3.5.2 Remarks

Formal Definitions

3.6.1 Linearizability

3.6.2 Compositional Linearizability
3.6.3 The Nonblocking Property

Progress Conditions
3.7.1 Dependent Progress Conditions

The Java Memory Model

3.8.1 Locks and Synchronized Blocks
3.8.2 Volatile Fields

3.8.3 Final Fields

22

24
25
26
27

28
31
31
33
37
40
4|

45
45
48

49
51

51
52

54
55
55

55
57
57
58

59
60

6l
62
63
63

39
3.10

3.1

Contents

Remarks
Chapter Notes

Exercises

4 Foundations of Shared Memory

4.1

4.2

43

44

4.5

The Space of Registers

Register Constructions

4.2.1 MRSW Safe Registers

4.2.2 A Regular Boolean MRSW Register
4.2.3 A Regular M-Valued MRSW Register
424 An Atomic SRSW Register

425 An Atomic MRSW Register

4.2.6 An Atomic MRMW Register

Atomic Snapshots

4.3.1 An Obstruction-Free Snapshot
4.3.2 A Wait-Free Snapshot

4.3.3 Correctness Arguments

Chapter Notes

Exercises

5 The Relative Power of Primitive
Synchronization Operations

5.1

5.2
5.3
5.4
5.5
5.6
5.7
5.8

Consensus Numbers
5.1.1 States and Valence

Atomic Registers

Consensus Protocols

FIFO Queues

Multiple Assignment Objects
Read—-Modify—Write Operations
Common2 RMW Operations

The compareAndSet () Operation

64
65
66

71
72

77
78
78
79
8l
82
85

87
87
88
90

93
94

99

100
101

103
106
106
110
112
114

116

xiii

Xiv Contents

5.9 Chapter Notes 117
5.10 Exercises 118
6 Universality of Consensus 125
6.1 Introduction 125
6.2 Universality 126
6.3 A Lock-Free Universal Construction 126
6.4 A Wait-Free Universal Construction 130
6.5 Chapter Notes 136
6.6 Exercises 137
PRACTICE 139
7 Spin Locks and Contention 141
7.1 Welcome to the Real World 141
7.2 Test-And-Set Locks 144
7.3 TAS-Based Spin Locks Revisited 146
7.4 Exponential Backoff 147
7.5 Queue Locks 149
7.5.1 Array-Based Locks 150

7.52 The CLH Queue Lock I51

7.5.3 The MCS Queue Lock 154

7.6 A Queue Lock with Timeouts 157
7.7 A Composite Lock 159
7.7.1 A Fast-Path Composite Lock 165

7.8 Hierarchical Locks 167
7.8.1 A Hierarchical Backoff Lock 167

7.8.2 A Hierarchical CLH Queue Lock 168

7.9 One Lock To Rule Them All 173
7.10 Chapter Notes 173

7.11 Exercises 174

8 Monitors and Blocking Synchronization
8.1 Introduction

8.2 Monitor Locks and Conditions
8.2.1 Conditions
8.2.2 The Lost-Wakeup Problem

8.3 Readers—Writers Locks
8.3.1 Simple Readers—Writers Lock
8.3.2 Fair Readers—Writers Lock

8.4 Our Own Reentrant Lock
8.5 Semaphores

8.6 Chapter Notes

8.7 Exercises

9 Linked Lists: The Role of Locking

9.1 Introduction
9.2 List-Based Sets
9.3 Concurrent Reasoning
9.4 Coarse-Grained Synchronization
9.5 Fine-Grained Synchronization
9.6 Optimistic Synchronization
9.7 Lazy Synchronization
9.8 Non-Blocking Synchronization
9.9 Discussion

9.10 Chapter Notes

9.1l Exercises

10 Concurrent Queues and the ABA Problem
10.1 Introduction
10.2 Queues
10.3 A Bounded Partial Queue
10.4 An Unbounded Total Queue
10.5 An Unbounded Lock-Free Queue

Contents

177
177

178
179
181

183
184
185

187
189
189
190

195
195
196
198
200
201
205
208
213
218
219
219

223
223
224
225
229
230

xvi Contents

10.6

10.7
10.8
10.9

Memory Reclamation and the ABA Problem
10.6.1 A Naive Synchronous Queue

Dual Data Structures
Chapter Notes

Exercises

Il Concurrent Stacks and Elimination

1.1
1.2
1.3

Introduction
An Unbounded Lock-Free Stack

Elimination

1 1.4 The Elimination Backoff Stack

1.5
1.6

I'1.4.1 A Lock-Free Exchanger
[1.4.2 The Elimination Array

Chapter Notes

Exercises

12 Counting, Sorting, and Distributed
Coordination

12.1
122
12.3

12.4
12.5

12.6
12.7
12.8

12.9
12.10

Introduction
Shared Counting

Software Combining

12.3.1 Overview

12.3.2 An Extended Example

12.3.3 Performance and Robustness

Quiescently Consistent Pools and Counters

Counting Networks

12.5.1 Networks That Count

12.5.2 The Bitonic Counting Network
[2.5.3 Performance and Pipelining

Diffracting Trees
Parallel Sorting

Sorting Networks
[2.8.1 Designing a Sorting Network

Sample Sorting

Distributed Coordination

233
237

238
241
24|

245
245
245
248

249
249
251

254
255

259
259
259

260
261
267
269

269

270
270
273
280

282
286

286
287

290
291

