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Preface

This book is intended to serve both as a textbook for a senior-level undergraduate
course, and as a reference for practitioners.

Readers should know enough discrete mathematics to understand “big-O”
notation, and what it means for a problem to be NP-complete. It is helpful to
be familiar with elementary systems constructs such as processors, threads, and
caches. A basic understanding of Java is needed to follow the examples. (We
explain advanced language features before using them.) Two appendixes summa-
rize what the reader needs to know: Appendix A covers programming language
constructs, and Appendix B covers multiprocessor hardware architectures.

The first third covers the principles of concurrent programming, showing how
to think like a concurrent programmer. Like many other skills such as driving a
car, cooking a meal, or appreciating caviar, thinking concurrently requires cul-
tivation, but it can be learned with moderate effort. Readers who want to start
programming right away may skip most of this section, but should still read
Chapters 2 and 3 which cover the basic ideas necessary to understand the rest
of the book.

We first look at the classic mutual exclusion problem (Chapter 2). This chap-
ter is essential for understanding why concurrent programming is a challenge. It
covers basic concepts such as fairness and deadlock. We then ask what it means
for a concurrent program to be correct (Chapter 3). We consider several alter-
native conditions, and the circumstances one might want to use each one. We
examine the properties of shared memory essential to concurrent computation
(Chapter 4), and we look at the kinds of synchronization primitives needed to
implement highly concurrent data structures (Chapters 5 and 6).

We think it is essential that anyone who wants to become truly skilled in the
art of multiprocessor programming spend time solving the problems presented
in the first part of this book. Although these problems are idealized, they distill
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the kind of thinking necessary to write effective multiprocessor programs. Most
important, they distill the style of thinking necessary to avoid the common mis-
takes committed by nearly all novice programmers when they first encounter
concurrency.

The next two-thirds describe the practice of concurrent programming. Each
chapter has a secondary theme, illustrating either a particular programming pat-
tern or algorithmic technique. At the level of systems and languages, Chapter 7
covers spin locks and contention. This chapter introduces the importance of
the underlying architecture, since spin lock performance cannot be understood
without understanding the multiprocessor memory hierarchy. Chapter 8 covers
monitor locks and waiting, a common synchronization idiom, especially in Java.
Chapter 16 covers work-stealing and parallelism, and Chapter 17 describes bar-
riers, all of which are useful for structuring concurrent applications.

Other chapters cover concurrent data structures. All these chapters depend
on Chapter 9, and the reader should read this chapter before reading the others.
Linked lists illustrate different kinds of synchronization patterns, ranging from
coarse-grained locking, to fine-grained locking, to lock-free structures (Chap-
ter 9). The FIFO queues illustrate the ABA synchronization hazard that arises
when using atomic synchronization primitives (Chapter 10), Stacks illustrate an
important synchronization pattern called elimination (Chapter 11), Hash maps
show how an algorithm can exploit natural parallelism (Chapter 13), Skip lists
illustrate efficient parallel search (Chapter 14), and priority queues illustrate
how one can sometimes weaken correctness guarantees to enhance performance
(Chapter 15).

Finally, Chapter 18 describes the emerging transactional approach to concur-
rency, which we believe will become increasingly important in the near future.

The importance of concurrency has not always been acknowledged. Here is

a quote from a 1989 New York Times article on new operating systems for the
IBM PC:

Real concurrency—in which one program actually continues to function while
you call up and use another—is more amazing but of small use to the average
person. How many programs do you have that take more than a few seconds to
perform any task?

Read this book, and decide for yourself.
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Suggested Ways to Teach
the Art of Multiprocessor
Programming

Preface

The following are three possible tracks to teaching a multiprocessor program-
ming course using the material in the book.

The first track is a short course for practitioners who are interested in tech-
niques that can be applied directly to problems at hand.

The second track is a longer course for students who are not Computer Science
majors, but who are interested in learning the basics of multiprocessor program-
ming, as well as techniques likely to be useful in their own areas.

The third track is a semester-long course for Computer Science majors, either
upper-level undergraduates or graduate students.

Practitioner Track

Cover Chapter 1, emphasizing Amdahl’s law and its implications. In Chapter 2,
cover sections 2.1, 2.2, 2.3, and 2.6. Mention the implications of the impossibility
proofs in Section 2.8. In Chapter 3, skip Sections 3.3 and 3.6.

Cover Chapter 7, except for Sections 7.7 and 7.8. Chapter 8, which deals mon-
itors and reentrant locks, may be familiar to some practitioners. Skip Section 8.5
on Semaphores.

Cover Chapters 9, 10, except for 10.7, and Sections 11.1 and 11.2. Skip the
material in Sections 11.3 and onwards. Skip Chapter 12.

Cover Chapters 13 and 14. Skip Chapter 15. Cover Chapter 16, except for Sec-
tion 16.5. In Chapter 17, teach sections 17.1-17.3.
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Non-CS Major Track

Cover Chapter 1, emphasizing Amdahl’s law and its implications. In Chapter 2,
cover sections 2.1, 2.2, 2.3, 2.5, and 2.6. Mention the implications of the impossi-
bility proofs in Section 2.8. In Chapter 3 skip Section 3.6.

Cover the material in Sections 4.1 and 4.2, and Chapter 5. Mention the uni-
versality of consensus, but skip Chapter 6.

Cover Chapter 7, except for Sections 7.7 and 7.8. Cover Chapter 8.

Cover Chapters 9, 10, except for 10.7, and Chapter 11. Skip Chapter 12.

Cover Chapters 13 and 14. Skip Chapter 15. Cover Chapter 16. In Chapter 17,
teach sections 17.1-17.3. Cover Chapter 18.

CS Major Track

The slides on the companion page were developed for a semester-long course

Cover Chapters 1 and 2 (Section 2.7 is optional) and 3. (Section 3.6 is
optional). Cover Chapters 4, 5, and 6. Before starting Chapter 7, it may be useful
to review basic multiprocessor architecture (Appendix B).

Cover Chapter 7 (Sections 7.7 and 7.8 are optional). Cover Chapter 8 if
your students are unfamiliar with Java monitors. Cover Chapters 9 and 10
(Section 10.7 optional). Cover Chapters 11, 12 (Sections 12.7, 12.8, and 12.9
are optional), 13, and 14. Chapter 15 is optional. Cover Chapters 16 and 17.
Chapter 18 is optional.
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