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Preface

First, let us explain the precise meaning of the compressed title. T'he word
“eigenvalues” means the first nontrivial Neumann or Dirichlet eigenvalues,
or the principal eigenvalues. The word “inequalities” means the Poincaré
inequalities, the logarithmic Sobolev inequalities, the Nash inequalities, and so
on. Actually, the first eigenvalues can be described by some Poincaré inequali-
ties, and so the second topic has a wider range than the first one. Next, for
a Markov process, corresponding to its operator, each inequality describes a
type of ergodicity. T'hus, study of the inequalities and their relations provides
a way to develop the ergodic theory for Markov processes. Due to these facts,
from a probabilistic point of view, the book can also be regarded as a study
of “ergodic convergence rates of Markov processes,” which could serve as an
alternative title of the book. However, this book is aimed at a larger class of
readers, not only probabilists.

The importance of these topics should be obvious. On the one hand, the
first eigenvalue is the leading term in the spectrum, which plays an important
role in almost every branch of mathematics. On the other hand, the ergodic
convergence rates constitute a recent research area in the theory of Markov
processes. This study has a very wide range of applications. In particular,
it provides a tool to describe the phase transitions and the effectiveness of
random algorithms, which are now a very fashionable research area.

This book surveys, in a popular way, the main progress made in the field
by our group. It consists of ten chapters plus two appendixes. The first chap-
ter is an overview of the second to the eighth ones. Mainly, we study several
different inequalities or different types of convergence by using three mathe-
matical tools: a probabilistic tool, the coupling methods (Chapters 2 and 3);
a generalized Cheeger’s method originating in Riemannian geometry (Chap-
ter 4); and an approach coming from potential theory and harmonic analysis
(Chapters 6 and 7). The explicit criteria for different types of convergence
and the explicit estimates of the convergence rates (or the optimal constants
in the inequalities) in dimension one are given in Chapters 5 and 6; some
generalizations are given in Chapter 7. The proofs of a diagram of nine types
of ergodicity (Theorem 1.9) are presented in Chapter 8. Very often, we deal
with one-dimensional elliptic operators or tridiagonal matrices (which can be
infinite) in detail, but we also handle general differential and integral oper-
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ators. To avoid heavy technical details, some proofs are split among several
locations in the text. This also provides different views of the same problem
at different levels. The topics of the last two chapters (9 and 10) are different
but closely related. Chapter 9 surveys the study of a class of interacting par-
ticle systems (from which a large part of the problems studied in this book
are motivated), and illustrates some applications. In the last chapter, one can
see an interesting application of the first eigenvalue, its eigenfunctions, and
an ergodic theorem to stochastic models of economics. Some related open
problems are included in each chapter. Moreover, an effort is made to make
each chapter, except the first one, more or less self-contained. Thus, once
one has read about the program in Chapter 1, one may freely go on to the
other chapters. The main exception is Chapter 3, which depends heavily on
Chapter 2. As usual, a quick way to get an impression about what is done in
the book is to look at the summaries given at the beginning of each chapter.

One should not be disappointed if one cannot find an answer in the book
for one’s own model. The complete solutions to our problems have only re-
cently been obtained in dimension one. Nevertheless, it is hoped that the
three methods studied in the book will be helpful. Each method has its own
advantages and disadvantages. In principle, the coupling method can produce
sharper estimates than the other two methods, but additional work is required
to figure out a suitable coupling and, more seriously, a good distance. The
Cheeger and capacitary methods work in a very general setup and are powerful
qualitatively, but they leave the estimation of isoperimetric constants to the
reader. The last task is usually quite hard in higher-dimensional situations.

This book serves as an introduction to a developing field. We emphasize
the ideas through simple examples rather than technical proofs, and most
of them are only sketched. It is hoped that the book will be readable by
nonspecialists. In the past ten years or more, the author has tried rather
hard to make acceptable lectures; the present book is based on these lecture
notes: Chen (1994b; 1997a; 1998a; 1999c¢; 2001a; 2002b; 2002c; 2003b; 2004a;
2004b) [see Chen (2001c)]. Having presented eleven lectures in Japan in 2002,
the author understood that it would be worthwhile to publish a short book,
and then the job was started.

Since each topic discussed in the book has a long history and contains
a great number of publications, it is impossible to collect a complete list of
references. We emphasize the recent progress and related references. It is
hoped that the bibliography is still rich enough that the reader can discover
a large number of contributors in the field and more related references.

Beijing, The People’s Republic of China Mu-Fa Chen, October 2004
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Chapter 1

An Overview of the Book

This chapter is an overview of the book, especially of the first eight chapters.
It consists of four sections. In the first section, we explain what eigenvalues
we are interested in and show the difficulties in studying the first (nontrivial)
eigenvalue through elementary examples. The second section presents some
new (dual) variational formulas and explicit bounds for the first eigenvalue of
the Laplacian on Riemannian manifolds or Jacobi matrices (Markov chains),
and explains the main idea of the proof, which is a probabilistic approach:
the coupling methods. In the third section, we introduce some recent lower
bounds of several basic inequalities, based on a generalization of Cheeger’s
approach which comes from Riemannian geometry. In the last section, a
diagram of nine different types of ergodicity and a table of explicit criteria
for them are presented. The criteria are motivated by the weighted Hardy
inequality, which comes from harmonic analysis.

1.1 Introduction
Let me now explain what eigenvalue we are talking about.

Definition. The first (nontrivial) eigenvalue

Consider a tridiagonal matrix (or in probabilistic language, a birth-death
process with state space E = {0,1,2,...} and Q-matrix)

—bg bo 0 0
ay —(0.1 + b)) by 0

Q=(g;)=1 o0 as —(az +b2) b

where ay, by > 0. Since the sum of each row equals 0, we have Q1 =0 =01,
where 1 is the vector having elements 1 everywhere and 0 is the zero vector.
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This means that the Q-matrix has an eigenvalue 0 with eigenvector 1. Next,
consider the finite case E, = {0,1,...,n}. Then, the eigenvalues of —Q are
discrete: 0 = Ag < A\; < --- < A,. We are interested in the first (nontrivial)
eigenvalue A\; = A} — Ao =: gap (Q) (also called the spectral gap of Q). In
the infinite case, A; := inf{{Spectrum of (—Q)} \ {0}} can be 0. Certainly,
one can consider a self-adjoint elliptic operator in R? or the Laplacian A on
manifolds or an infinite-dimensional operator as in the study of interacting
particle systems.

Since the spectral theory is of central importance in many branches of
mathematics and the first nontrivial eigenvalue is the leading term of the
spectrum, it should not be surprising that the study of A\; has a very wide
range of applications.

Difficulties

To get a concrete feeling about the difficulties of the topic, let us look at the
following examples with finite state spaces.

When E = {0,1}, it is trivial that Ay = a; + by. Everyone is happy to
see this result, since if either aji-or by increases, so does A,. If we go one
more step, E = {0,1,2}, then we have four parameters, bg,b; and a;,as. In
this case, \; = g=1 [al +ag + by + by — \/(a,l —ag + by — b1)2 + 4a.1by ] It is
disappointing to see this result, since parameters effect on \; is not clear at
all. When E = {0,1,2,3}, we have six parameters: bg, by, bs,a;,a2,a3. The
solution is expressed by the three quantities B, C, and D:

,_D C 2!/3 (3B - D?)
YT 3 T 3213 3C ’

where the quantities D, B, and C are not too complicated:

D =ay +az + a3+ bo+ by + bo,
B =a3zbg + ay (a3+b0)+a3b1+b0b1 +boba + by by +a; (az +az + by),

1/3
C= (A+ \/4(SB—D2)3+A2) :

However, in the last expression, another quantity, A, is involved. What, then,
is A?

A= -2a3-2a3 —2a3 +3a3bo + 3azb} — 2b3 + 3a3b; — 12 a3 bob, + 3b3b;
+3a3bi+ 3bo b — 2b3— 6a3by + 6 azboba+ 3b3ba+ 6 azbiby— 12 bobybe
+ 3b2 by — 6agb3+ 3bg b3+ 3byb2 — 2b3 + 3aZ (ag + az— 2bog— 2b; + by)
+3a3 a3 + by — 2 (by + ba)]
+ 3az [a3 + b3 — 2b3 — by by — 2b3 — a3(4bo — 2by + ba) + 2bg(by + b2)]
+3ay [a} + a5 —2b% —boby — 2b3 —az(daz — 2bo + by — 2by)
+2bg by + 2by by + b3 + 2as(bo + by + b2)],
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computed using Mathematica. One should be shocked, at least I was, to see
this result, since the roles of the parameters are completely hidden! Of course,
everyone understands that it is impossible to compute A; explicitly when the
size of the matrix is greater than five!

Now, how about the estimation of A\;? To see this, let us consider the
perturbation of the eigenvalues and eigenfunctions. We consider the infinite
state space E = {0,1,2,...}. Denote by g and Degree(g), respectively, the
eigenfunction of A\; and the degree of g when g is polynomial. Three examples
of the perturbation of A; and Degree(g) are listed in Table 1.1.

Table 1.1 Three examples of the perturbation of A\; and Degree(g)

b; (i > 0) ai(i>1) A1 | Degree(g)

i+c(c>0) 2 1 1
i+1 2i+3 2 2
i+1 2i+ (4+ V2) 3 3

The first line is the well-known linear model, for which A\; = 1, independent
of the constant ¢ > 0, and g is linear. Next, keeping the same birth rate,
b; = i+ 1, the perturbation of the death rate a; from 2: to 27 + 3 (respectively,
2i + 4 + 1/2) leads to the change of \; from one to two (respectively, three).
More surprisingly, the eigenfunction g is changed from linear to quadratic
(respectively, cubic). For the intermediate values of a; between 2i, 2i + 3, and
2i + 4 + /2, A\, is unknown, since g is nonpolynomial. As seen from these
examples, the first eigenvalue is very sensitive. Hence, in general, it is very
hard to estimate A;.

Hopefully, we have presented enough examples to show the extreme diffi-
culties of the topic. Very fortunately, at last, we are able to present a complete
solution to this problem in the present context. Please be patient; the result
will be given only later.

For a long period, we did not know how to proceed. So we visited several
branches of mathematics. Finally, we found that the topic was well studied
in Riemannian geometry.

1.2 New variational formula for the first
eigenvalue

A story of estimating A, in geometry

Here is a short story about the study of A; in geometry.

Consider the Laplacian A on a connected compact Riemannian manifold
(M, g), where g is the Riemannian metric. The spectrum of A is discrete:
<< =X < —A; < —Xp =0 (may be repeated). Estimating these eigenvalues
Ax (especially Ay) is an important chapter in modern geometry. As far as
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we know, five books, excluding books on general spectral theory, have been
devoted to this topic: I. Chavel (1984), P.H. Bérard (1986), R. Schoen and
S.T. Yau (1988), P. Li (1993), and C.Y. Ma (1993). About 2000 references are
collected in the second quoted book. Thus, it is impossible for us to introduce
an overview of what has been done in geometry. Instead, we would like to
show the reader ten of the most beautiful lower bounds. For a manifold M,
denote its dimension, diameter, and the lower bound of Ricci curvature by
d, D, and K (Riccipr > Kg), respectively. The simplest example is the unit
sphere S¢ in R4+!, for which D = 7 and K = d — 1. We are interested in
estimating A; in terms of these three geometric quantities. It is relatively
easy to obtain an upper bound by applying a test function f € C'(M) to the
classical variational formula

Alzinf{/M IV£l2dz: feCY(M), /Mfdxzo, /Mf2dx=1}, (1.0)

where “dz” is the Riemannian volume element. To obtain the lower bound,
however, is much harder. In Table 1.2, we list ten of the strongest lower

bounds that have been derived in the past, using various sophisticated me-
thods.

Table 1.2 Ten lower bounds of \;

Author(s) Lower bound
A. Lichnerowicz (1958) d—il— K, K20 (1.1)
PH.Bérard, G. Besson, | Jo7? cosd-1tdt | ¥? B de150 {19
& S. Gallot (1985) D72 cogd-1¢dt | - '
2
P.Li & S.T. Yau (1980) 2L2- K30 (1.3
J.Q. Zhong & 1!'_2
HC. Yang (1984) | pz@ K20 (1-4)
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