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The area of modern physics embraces topics that have evolved since roughly the turn of the twentieth
century. These developments can be mind-boggling, as with the effects on time predicted by Einstein’s Special
Theory of Relativity, or quite practical, like the many devices based upon semiconductors, whose explanation
lies in the band theory of solids.

The scope of the present book may be gauged from the Table of Contents. Each chapter consists of a
succinct presentation of the principles and “meat” of a particular subject, followed by a large number of
completely solved problems that naturally develop the subject and illustrate the principles. It is the authors’
conviction that these solved problems are a valuable learning tool. The solved problems have been made short
and to the point, and have been ordered in terms of difficulty. They are followed by unsolved supplementary
problems, with answers, which allow the reader to check his or her grasp of the material.

It has been assumed that the reader has had the standard introductory courses in general physics, and the
book is geared primarily at the sophomore or junior level, although we have also included problems of a more
advanced nature. While it will certainly serve as a supplement to any standard modern physics text, this book is
sufficiently comprehensive and self-contained to be used by itself to learn the principles of modern physics.

We extend special thanks to David Beckwith for meticulous editing of the first edition and for input that
improved the final version of the book. Any mistakes are ours, of course, and we would appreciate having these
pointed out to us. Finally, we are indebted to our families for their enormous patience with us throughout the
long preparation of this work.

RONALD GAUTREAU
WILLIAM SAVIN
New Jersey Institute of Technology
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The Special Theory
of Relativity






Galilean
Transformations

NTS AND COORDINATES

n by considering the concept of a physical event. The event might be the striking of a tree by a
It or the collision of two particles, and happens at a point in space and at an instant in time. The
vent is specified by an observer by assigning to it four coordinates: the three position
, ¥, z that measure the distance from the origin of a coordinate system where the observer
d the time coordinate ¢ that the observer records with his clock.

now two observers, O and O’, where O’ travels with a constant velocity v with respect to O
mmon x — x” axis (Fig. 1-1). Both observers are equipped with metersticks and clocks so that
ure coordinates of events. Further, suppose that both observers adjust their clocks so that
ss each other at x = x’ = 0, the clocks read r = ¢ = 0. Any given event P will have eight
y iated with it, the four coordinates (x,y,z, ) assigned by O and the four coordinates
ssigned (to the same event) by O

Event P: (x', y', 2/, 1)
(x, 0, 2,0

8 |




4 GALILEAN TRANSFORMATIONS [CHAP. 1

1.2 GALILEAN COORDINATE TRANSFORMATIONS

The relationship between the measurements (x, y, z, #) of O and the measurements (x', y',Z, t') of O’
for a particular event is obtained by examining Fig. 1-1:

X =x—uvt Y=y Z =z
In addition, in classical physics it is implicitly assumed that
t =t

These four equations are called the Galilean coordinate transformations.

1.3 GALILEAN VELOCITY TRANSFORMATIONS

In addition to the coordinates of an event, the velocity of a particle is of interest. Observers O and O’
will describe the particle’s velocity by assigning three components to it, with (u,, u,,, u,) being the velocity
components as measured by O, and (u, u;,, ;) being the velocity components as measured by O’

The relationship between (u,, u,, u,) and (4, u;,, u) is obtained from the time differentiation of the

Galilean coordinate transformations. Thus, from x’ = x — vt,

ax' d dt dx
== —0)— == — 1)=u, —
“Ea T a =1 )dt’ (a't U>( J =iy =¥
Altogether, the Galilean velocity transformations are
U, =u, — 0 u, = u, u, = u,

1.4 GALILEAN ACCELERATION TRANSFORMATIONS

The acceleration of a particle is the time derivative of its velocity, i.e., a, = du,/dt, etc. To find the
Galilean acceleration transformations we differentiate the velocity transformations and use the facts that
¢ =t and v = constant to obtain

/
=a, a, =a,

Thus the measured acceleration components are the same for all observers moving with uniform relative
velocity.

1.5 INVARIANCE OF AN EQUATION

By invariance of an equation it is meant that the equation will have the same form when determined by
two observers. In classical theory it is assumed that space and time measurements of two observers are
related by the Galilean transformations. Thus, when a particular form of an equation is determined by one
observer, the Galilean transformations can be applied to this form to determine the form for the other
observer. If both forms are the same, the equation is invariant under the Galilean transformations. See
Problems 1.11 and 1.12.

Solved Problems

1.1. A passenger in a train moving at 30 m/s passes a man standing on a station platform at t = ¢ = 0.
Twenty seconds after the train passes him, the man on the platform determines that a bird flying
along the tracks in the same direction as the train is 800 m away. What are the coordinates of the
bird as determined by the passenger?
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1.2.

1.3.

1.4.

Ans.  The coordinates assigned to the bird by the man on the station platform are

(x,y,z,1) = (800m, 0, 0, 20s)
The passenger measures the distance x’ to the bird as
X =x—ovt =800m — (30m/s)(20s) = 200 m
Therefore the bird’s coordinates as determined by the passenger are

,y,Z,{)=(200m,0,0,20s)

Refer to Problem 1.1. Five seconds after making the first coordinate measurement, the man on the
platform determines that the bird is 850 m away. From these data find the velocity of the bird
(assumed constant) as determined by the man on the platform and by the passenger on the train.

Ans.  The coordinates assigned to the bird at the second position by the man on the platform are
(XZ, Va2, 27, tz) = (850 m, 0, 0, 25 S)
Hence, the velocity u, of the bird as measured by the man on the platform is

X, —x, 850m—800m
= Th - 25s—20s - Ti0m/s

The positive sign indicates the bird is flying in the positive x-direction. The passenger finds that at the
second position the distance x} to the bird is

Xy = x, — vt = 850m — (30m/s)(25s) = 100m

Thus, (x5, 5, 25, ) = (100 m, 0, 0, 25 5), and the velocity u, of the bird as measured by the passenger
on the train is
, xX—x, 100m—200m

= - =-20
T —f T 25s—20s s

u

so that, as measured by the passenger, the bird is moving in the negative x'-direction. Note that this
result is consistent with that obtained from the Galilean velocity transformation:

U, =u,—v=10m/s —30m/s = —20m/s

A sample of radioactive material, at rest in the laboratory, ejects two electrons in opposite
directions. One of the electrons has a speed of 0.6¢ and the other has a speed of 0.7¢, as measured
by a laboratory observer. According to classical velocity transformations, what will be the speed of
one electron as measured from the other?

-Ans.  Let observer O be at rest with respect to the laboratory and let observer O’ be at rest with respect to

the particle moving with speed 0.6¢ (taken in the positive direction). Then, from the Galilean velocity
transformation,

Uy =u,—v=-0.7c—0.6c=—13c

This problem demonstrates that velocities greater than the speed of light are possible with the
Galilean transformations, a result that is inconsistent with Special Relativity.

A train moving with a velocity of 60 mi/hr passes through a railroad station at 12:00. Twenty
seconds later a bolt of lightning strikes the railroad tracks one mile from the station in the same
direction that the train is moving. Find the coordinates of the lightning flash as measured by an
observer at the station and by the engineer of the train.

Ans. - Both observers measure the time coordinate as
1 hr 1

t=t Z(ZOS)(m> =§6hr
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The observer at the station measures the spatial coordinate to be x = 1 mi. The spatial coordinate as
determined by the engineer of the train is

; . . 1 2 .
X =x—uvt= 1m1—(60m1/hr)(m hr) _gml

1.5. A hunter on the ground fires a bullet in the northeast direction which strikes a deer 0.25 miles from
the hunter. The bullet travels with a speed of 1800 mi/hr. At the instant when the bullet is fired, an
airplane is directly over the hunter at an altitude h of one mile and is traveling due east with a
velocity of 600 mi/hr. When the bullet strikes the deer, what are the coordinates as determined by
an observer in the airplane?

Ans.  Using the Galilean transformations,
0.25 mi
f =139 % 10~*h
[800/hr 0 ¥ 107
x = x — vt = (0.25 mi) cos 45° — (600 mi/hr)(1.39 x 10~ hr) = 0.094 mi
V' =y =1(0.25mi)sin45° = 0.177 mi
Z=z—h=0-—1mi=—1mi

1.6.  An observer, at rest with respect to the ground, observes the following collision. A particle of mass
m; = 3 kg moving with velocity #; = 4 m/s along the x-axis approaches a second particle of mass
m, = 1 kg moving with velocity u, = —3m/s along the x-axis. After a head-on collision the
ground observer finds that m, has velocity u5 = 3 m/s along the x-axis. Find the velocity u} of m,
after the collision.

Ans. Initial momentum = final momentum
myuy + myuy = myuj + myu;
(3kg)(4 m/s) + (1 kg)(—=3m/s) = (3 kg)u] + (1 kg)(3m/s)
9kg-m/s = (3kgu] +3kg-m/s

Solving, u} = 2m/s.

1.7. A second observer, O’, who is walking with a velocity of 2 m/s relative to the ground along the x-
axis observes the collision described in Problem 1.6. What are the system momenta before and after
the collision as determined by him?

Ans.  Using the Galilean velocity transformations,

Uy =u; —v=4m/s—2m/s =2m/s
Uy =u, —v=-3m/s—2m/s =—-5m/s
U =uf—v=2m/s—2m/s =0
Wy =u;—v=3m/s—2m/s=1m/s
(initial momentum)’ = m,u} + myuy = (3kg)(2m/s) + (1kg)(—5m/s) = 1 kg-m/s
(final momentum)’ = mu}" + mym3’ = (3kg)(0) + (1kg)(1 m/s) = 1 kg-m/s

Thus, as a result of the Galilean transformations, O’ also determines that momentum is conserved (but
at a different value from that found by O).

1.8.  An open car traveling at 100 ft/s has a boy in it who throws a ball upward with a velocity of 20 ft/s.
Write the equation of motion (giving position as a function of time) for the ball as seen by (a) the
boy, (b) an observer stationary on the road.
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Ans.  (a) For the boy in the car the ball travels straight up and down, so
Y = vt +3ar? = (20 ft/s)f +3(—32ft/s?)r? =207 — 161

Xx=2=0

(b) For the stationary observer, one obtains from the Galilean transformations

/

t=t
x=x+vt =0+ 100¢ y =) =20t — 16¢ z=2Z=0

1.9. Consider a mass attached to a spring and moving on a horizontal, frictionless surface. Show, from
the classical transformation laws, that the equations of motion of the mass are the same as
determined by an observer at rest with respect to the surface and by a second observer moving with
constant velocity along the direction of the spring.

Ans.  The equation of motion of the mass, as determined by an observer at rest with respect to the surface, is
F = ma, or

d*x

—k(x—x@:mw (1)

To determine the equation of motion as found by the second observer we use the Galilean
transformations to obtain

x=x+of o+ ot dx_d¥
= Xn ‘=X —_———

il de ~ dr?
Substituting these values in (/) gives

2
k&~ ) = m % @

Because (/) and (2) have the same form, the equation of motion is invariant under the Galilean
transformations.

1.10. Show that the electromagnetic wave equation,

Po Po Po 18

_+_ s s i i

oz 2 a2 2o
is not invariant under the Galilean transformations.

Ans.  The equation will be invariant if it retains the same form when expressed in terms of the new variables
x,y,Z,¢. We first find from the Galilean transformations that
ax’ ox’ o 8y o
—=1 — =0 —_——=—=—=1
ox ot o W oz
o' a9y o

v & mm 0
From the chain rule and using the above results we have
a6 _odsae spy apd b a6 P24
ox ' ax Y ax o ax o ox  ax x2 a2

Similarly,

P _Fo P P9

3 32 a2 o6



