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Introduction to Quantum Fields on a Lattice

Quantum field theory, our description of the fundamental forces in
nature, was originally formulated in continuous space-time, where it
leads to embarrassing infinities which have to be eliminated by a process
called renormalization. A simple but rigorous formulation can be ob-
tained by replacing continuous space-time by a discrete set of points on a
lattice. This clarifies the essentials of quantum fields using concepts such
as universality of critical phenomena and the renormalization group.

This book provides a clear and pedagogical introduction to quantum
fields on a lattice. The path integral on the lattice is explained in concrete
examples using weak- and strong-coupling expansions. Fundamental
concepts, such as ‘triviality’ of Higgs fields and confinement of quarks
and gluons into hadrons, are described and illustrated with the results of
numerical simulations. The book also provides an introduction to chiral
symmetry and chiral gauge theory. Based on the lecture notes of a course
given by the author, this book contains many explanatory examples and
exercises, and is suitable as a textbook for advanced undergraduate and
graduate courses.

JAN SMIT holds a position at the Institute of Theoretical Physics of
the University of Amsterdam and, since 1991, he has been Professor
of Theoretical Physics at Utrecht University. He is well known for his
fundamental contributions to lattice gauge theory. His current interests
are lattice methods for quantum gravity, applications to cosmology and
the creation of the quark-gluon plasma in the laboratory.
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Preface

She [field theory] is not a robust mate ready to
pitch in and lend a helping hand. She is a haunting
mistress, refined, and much too beautiful for hard
work. She is at her best in formal dress, and thus
displayed in this book, where rigor will be found to
be absolutely absent. Bryce S. DeWitt

Since the above characterization appeared (1] in 1965 we have witnessed
great progress in quantum field theory, our description of fundamental
particles and their interactions. This book displays her in informal dress,
robust and ready to give results, rigorous, while at a pedestrian mathe-
matical level. By approximating space-time by a collection of points on
a lattice we get a number of benefits:

e it serves as a precise but simple definition of quantum fields, which

" has its own beauty;

e it brings to the fore and clarifies essential aspects such as renormal-
ization, scaling, universality, and the role of topology;

e it makes a fruitful connection to statistical physics;

e it allows numerical simulations on a computer, giving truly non-
perturbative results as well as new physical intuition into the behavior
of the system.

This book is based on notes of a lecture course given to advanced
undergraduate students during the period 1984-1995. An effort was
made to accomodate those without prior knowledge of field theory. In the
present version, examples from numerical simulations have been replaced

xi



xii Preface

by more recent results, and a few sections (8.3-8.6) on lattice aspects of
chiral symmetry have been added. The latter notoriously complicated
topic was not dealt with in the lectures, but for this book it seemed
appropriate to give an introduction.

An overview of the research area in this book is given by the pro-
ceedings of the yearly symposia ‘Lattice XX’, which contain excellent
reviews in which the authors tried hard to make the material accessible.
These meetings tend to be dominated by QCD, which is understandable,
as many of the physical applications are in the sphere of the strong
interactions, but a lot of exciting developments usually take place ‘on the
fringe’, in the parallel sessions. In fact, Lattice XX may be considered as
the arena for non-perturbative field theory. The appropriate papers can
be retrieved from the e-print archive http://arXiv.org/ and its mirrors,
or the SPIRES website http://www.slac.stanford.edu/spires/hep/

I would like to thank my students, who stumbled over my mistakes, for
their perseverance and enthusiasm, and my colleagues for collaborations
and for sharing their insight into this ever-surprising research field.

Amsterdam, November 2001
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1

Introduction

We introduce here quarks and gluons. The analogy with electrodynamics
at short distances disappears at larger distances with the emergence
of the string tension, the force that confines the quarks and gluons
permanently into bound states called hadrons.

Subsequently we introduce the simplest relativistic field theory, the
classical scalar field.

1.1 QED, QCD, and confinement

Quantum electrodynamics (QED) is the quantum theory of photons
(7) and charged particles such as electrons (e*), muons (u*), protons
(p), pions (7*), etc. Typical phenomena that can be described by
perturbation theory are Compton scattering (y + e~ — v+ e7), and
pair annihilation/production such as et + e~ — pt + u~. Examples of
non-perturbative phenomena are the formation of atoms and molecules.
The expansion parameter of perturbation theory is the fine-structure
constant! o = e%/4x.

Quantum chromodynamics (QCD) is the quantum theory of quarks
(¢) and gluons (g). The quarks u, d, ¢, s, t and b (‘up’, ‘down’, ‘charm’,
‘strange’, ‘top’ and ‘bottom’) are analogous to the charged leptons v, e,
Vu, M, V7, and 7. In addition to electric charge they also carry ‘color
charges’, which are the sources of the gluon fields. The gluons are
analogous to photons, except that they are self-interacting because they
also carry color charges. The strength of these interactions is measured
by as = g?/4r (alpha strong), with g analogous to the electromagnetic
charge e. The ‘atoms’ of QCD are g¢ (¢ denotes the antiparticle of q)
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Fig. 1.1. Intuitive representation of chromoelectric field lines between a static
quark-antiquark source pair in QCD: (a) Coulomb-like at short distances;
(b) string-like at large distances, at which the energy content per unit length
becomes constant.

bound states called mesonst (w, K, n, ', p, K*, w, ¢, ...) and 3q bound
states called baryons (the nucleon N, and furthermore £, A, =, A, ¥,
A*,...). The mesons are bosons and the baryons are fermions. There
may be also multi-quark states analogous to molecules. Furthermore,
there are expected to be glueballs consisting mainly of gluons. These
bound states are called ‘hadrons’ and their properties as determined by
experiment are recorded in the tables of the Particle Data Group [2].

The way that the gluons interact among themselves has dramatic
effects. At distances of the order of the hadron size, the interactions are
strong and as effectively becomes arbitrarily large as the distance scale
increases. Because of the increasing potential energy between quarks at
large distances, it is not possible to have single quarks in the theory:
they are permanently confined in bound states.

For a precise characterization of confinement one considers the theory
with gluons only (no dynamical quarks) in which static external sources
are inserted with quark quantum numbers, a distance r apart. The
energy of this configuration is the quark-antiquark potential V(r). In
QCD confinement is realized such that V' (r) increases linearly with r as
r — 00,

V(r)=or, r— . (1.1)
The coefficient o is called the string tension, because there are effective
string models for V(7). Such models are very useful for grasping some

of the physics involved (figure 1.1).
Because of confinement, quarks and gluons cannot exist as free parti-

t The quark content of these particles is given in table 7.1 in section 7.5.
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Fig. 1.2. Shape of the static qG potential and the force F' = 8V/0r.

cles. No such free particles have been found. However, scattering exper-
iments at high momentum transfers (corresponding to short distances)
have led to the conclusion that there are quarks and gluons inside the
hadrons. The effective interaction strength ay is small at short distances.
Because of this, perturbation theory is applicable at short distances or
large momentum transfers. This can also be seen from the force derived
from the ¢g potential, F = 9V/0r. See figure 1.2. Writing conventionally

4 ag(r)
F(r)= = -, 1.2
(=327, (12
we know that as — 0 very slowly as the distance decreases,
4
: N —— 1.
as(r) ~ (/A% (1.3)

This is called asymptotic freedom. The parameter A has the dimension
of a mass and may be taken to set the dimension scale in quark-less
‘QCD’. For the glueball mass m or string tension o we can then write

m = CnA, Vo = C,A. (1.4)

Constants like C}, and C,, which relate short-distance to long-distance
properties, are non-perturbative quantities. They are pure numbers
whose computation is a challenge to be met by the theory developed
in the following chapters.

The value of the string tension o is known to be approximately
(400 MeV)2. This information comes from a remarkable property of the
hadronic mass spectrum, the fact that, for the leading spin states, the
spin J is approximately linear in the squared mass m?,

J = ag+a'm?. (1.5)

See figure 1.3. Such approximately straight ‘Regge trajectories’ can be
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Fig. 1.3. Plot of spin J versus m? (GeV?) for p- and 7-like particles. The dots
give the positions of particles, the straight lines are fits to the data, labeled
by their particles with lowest spin. The line labeled ‘pot’ is L versus H? for
the solution (1.10), for clarity shifted upward by two units, for mq = m,/2,
o =1/8al,.

understood from the following simple effective Hamiltonian for binding

of a qq pair,
H=2/m2+p*+or. (1.6)

Here m, is the mass of the constituent quarks, taken to be equal for
simplicity, p = |p| is the relative momentum, » = |r| is the relative
separation, and the spin of the quarks is ignored. The potential is taken
to be purely linear, because we are interested in the large-mass bound
states with large relative angular momentum L, for which one expects
that only the long-distance part of V'(r) is important.

For such states with large quantum number L the classical approx-
imation should be reasonable. Hence, consider the classical Hamilton
equations,

dre _OH dpe 0 0
dt Opk dt Ork
and the following Ansatz for a circular solution:

r; = acos(wt), r2 =asin(wt), 73 =0,

p1 = —bsin(wt), p» = bcos(wt), p3=0. (1.8)
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Substituting (1.8) into (1.7) we get relations among w, a, and b, and
expressions for p and 7, which can be written in the form

1

p=b=ow™!, r=a=2s"'c"'p, s=,/1+m2/p? (1.9)

such that L and H can be written as
L=rp=2s"to"'p?, H=2(s+s")p (1.10)

For p> » m2, s = 1, L x p? and H « p. Then L o H? and, because
H = m is the mass (rest energy) of the bound state, we see that

o' =[LH?] = (80)7 1. (1.11)

p/mq—o0
It turns out that L is approximately linear in H* even for quite small
p?, such that L < 1, as shown in figure 1.3. Of course, the classical
approximation is suspect for L not much larger than unity, but the same
phenomenon appears to take place quantum mechanically in nature,
where the lower spin states are also near the straight line fitting the
higher spin states.?

With o/ = 1/80, the experimental value o/ ~ 0.90 GeV 2 gives /o =
370 MeV. The effective string model (see e.g. [3] section 10.5) leads
approximately to the same answer: o/ = 1/270, giving /o ~ 420 MeV.
The string model is perhaps closer to reality if most of the bound-state
energy is in the string-like chromoelectric field, but it should be kept in
mind that both the string model and the effective Hamiltonian give only
an approximate representation of QCD.

1.2 Scalar field

We start our exploration of field theory with the scalar field. Scalar
fields ¢(z) (z = (x,t), t = z°) are used to describe spinless particles.
Particles appearing elementary on one distance scale may turn out to be
be composite bound states on a smaller distance scale. For example,
protons, pions, etc. appear elementary on the scale of centimeters,
but composed of quarks and gluons on much shorter distance scales.
Similarly, fields may also be elementary or composite. For example, for
the description of pions we may use elementary scalar fields ¢(z), or
composite scalar fields of the schematic form v/(z)vs¥(z), where ¥(z)
and ¢/(x) are quark fields and s is a Dirac matrix. Such composite fields
can still be approximately represented by elementary ¢(z), which are
then called effective fields. This is useful for the description of effective
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interactions, which are the result of more fundamental interactions on a
shorter distance scale.

A basic tool in the description is the action S = [dt L, with L the
Lagrangian. For a nonrelativistic particle described by coordinates g,
k=1, 2, 3, the Lagrangian has the form kinetic energy minus potential
energy, L = qrgr/2m — V(q).T For the anharmonic oscillator in three
dimensions the potential has the form V(q) = w?¢?/2 + A\(¢?)%/4, ¢* =
qxgx- In field theory a simple example is the action for the ¢* theory,

8= /d“:c L(z), d*z = dz®dr'dr?dz3, (1.12)
M

L(z) = $8ip0(2)Bp(x) — §Vip(T) - Voo (z) — §u*0(2)® — $Ap(2)?, (1.13)

Here M is a domain in space-time, ¢(zx) is a scalar field, £(z) is the
action density or Lagrange function, and A and p? are constants () is
dimensionless and u? has dimension (mass)? = (length)~2). Note that
the index x is a continuous analog of the discrete index k: ¢(x,t) « gx(t).

Requiring the action to be stationary under variations d¢(x) of p(z),
such that d¢(z) = 0 for = on the boundary of M, leads to the equation
of motion:

5 = [ ata[-02(0) + Vola) - Wp(a) - No(a)*] Bola)
=0 = (B2-Vi+udp+r®=0. (1.14)

In the first step we made a partial integration. In classical field theory the
equations of motion are very important (e.g. Maxwell theory). In quan-
tum field theory their importance depends very much on the problem
and method of solution. The action itself comes more to the foreground,
especially in the path-integral description of quantum theory.

Various states of the system can be characterized by the energy H =
S/ d3z M. The energy density has the form kinetic energy plus potential
energy, and is given by

H=13¢*+ 5(Ve)? + U, (1.15)

w=

2

U= 35207 + 1o, (1.16)

The field configuration with lowest energy is called the ground state. It
has ¢ = Vi = 0 and minimal U. We shall assume A > 0, such that H is

t Unless indicated otherwise, summation over repeated indices is implied, gxgx =
>k Grqx-



