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Foreword

As with the first, the second volume contains substantially more material than can
be covered in a one-semester course. Such courses may omit many beautiful and
well-grounded applications which connect broadly to many areas of mathematics.
We of course hope that students will pursue this material independently; teachers
may find it useful for undergraduate seminars.

For an overview of the material presented, consult the table of contents and
the chapter introductions. As before, we stress that doing the numerous exercises
is indispensable for understanding the subject matter, and they also round out
and amplify the main text.

In writing this volume, we are indebted to the help of many. We especially
thank our friends and colleages Pavol Quittner and Gieri Simonett. They have
not only meticulously reviewed the entire manuscript and assisted in weeding out
errors but also, through their valuable suggestions for improvement, contributed
essentially to the final version. We also extend great thanks to our staff for their
careful perusal of the entire manuscript and for tracking errata and inaccuracies.

Our most heartfelt thank extends again to our “typesetting perfectionist”,
without whose tireless effort this book would not look nearly so nice.! We also
thank Andreas for helping resolve hardware and software problems.

Finally, we extend thanks to Thomas Hintermann and to Birkh&user for the
good working relationship and their understanding of our desired deadlines.

Zirich and Kassel, March 1999 H. Amann and J. Escher

1The text was set in IATEX, and the figures were created with CorelDRAW! and Maple.



vi Foreword

Foreword to the second edition

In this version, we have corrected errors, resolved imprecisions, and simplified
several proofs. These areas for improvement were brought to our attention by
readers. To them and to our colleagues H. Crauel, A. Ilchmann and G. Prokert,
we extend heartfelt thanks.

Zirich and Hannover, December 2003 H. Amann and J. Escher

Foreword to the English translation

It is a pleasure to express our gratitude to Silvio Levy and Matt Cargo for their
careful and insightful translation of the original German text into English. Their
effective and pleasant cooperation during the process of translation is highly ap-
preciated.

Ziirich and Hannover, March 2008 H. Amann and J. Escher
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Chapter VI

Integral calculus in one variable

Integration was invented for finding the area of shapes. This, of course, is an
ancient problem, and the basic strategy for solving it is equally old: divide the
shape into rectangles and add up their areas.

A mathematically satisfactory realization of this clear, intuitive idea is amaz-
ingly subtle. We note in particular that is a vast number of ways a given shape
can be approximated by a union of rectangles. It is not at all self-evident they all
lead to the same result. For this reason, we will not develop the rigorous theory
of measures until Volume III.

In this chapter, we will consider only the simpler case of determining the area
between the graph of a sufficiently regular function of one variable and its axis.
By laying the groundwork for approximating a function by a juxtaposed series of
rectangles, we will see that this boils down to approaching the function by a series
of staircase functions, that is, functions that are piecewise constant. We will show
that this idea for approximations is extremely flexible and is independent of its
original geometric motivation, and we will arrive at a concept of integration that
applies to a large class of vector-valued functions of a real variable.

To determine precisely the class of functions to which we can assign an inte-
gral, we must examine which functions can be approximated by staircase functions.
By studying the convergence under the supremum norm, that is, by asking if a
given function can be approximated uniformly on the entire interval by staircase
functions, we are led to the class of jump continuous functions. Section 1 is devoted
to studying this class.

There, we will see that an integral is a linear map on the vector space of
staircase functions. There is then the problem of extending integration to the
space of jump continuous functions; the extension should preserve the elementary
properties of this map, particularly linearity. This exercise turns out to be a special
case of the general problem of uniquely extending continuous maps. Because the
extension problem is of great importance and enters many areas of mathematics, we



2 VI Integral calculus in one variable

will discuss it at length in Section 2. From the fundamental extension theorem for
uniformly continuous maps, we will derive the theorem of continuous extensions
of continuous linear maps. This will give us an opportunity to introduce the
important concepts of bounded linear operators and the operator norm, which
play a fundamental role in modern analysis.

After this groundwork, we will introduce in Section 3 the integral of jump
continuous functions. This, the Cauchy—Riemann integral, extends the elemen-
tary integral of staircase functions. In the sections following, we will derive its
fundamental properties. Of great importance (and you can tell by the name) is
the fundamental theorem of calculus, which, to oversimplify, says that integration
reverses differentiation. Through this theorem, we will be able to explicitly calcu-
late a great many integrals and develop a flexible technique for integration. This
will happen in Section 5.

In the remaining sections —except for the eighth— we will explore applica-
tions of the so-far developed differential and integral calculus. Since these are not
essential for the overall structure of analysis, they can be skipped or merely sam-
pled on first reading. However, they do contain many of the beautiful results of
classical mathematics, which are needed not only for one’s general mathematical
literacy but also for numerous applications, both inside and outside of mathemat-
ics.

Section 6 will explore the connection between integrals and sums. We derive
the Euler—Maclaurin sum formula and point out some of its consequences. Special
mention goes to the proof of the formulas of de Moivre and Sterling, which describe
the asymptotic behavior of the factorial function, and also to the derivation of
several fundamental properties of the famous Riemann ¢ function. The latter is
important in connection to the asymptotic behavior of the distribution of prime
numbers, which, of course, we can go into only very briefly.

In Section 7, we will revive the problem — mentioned at the end of Chap-
ter V — of representing periodic functions by trigonometric series. With help from
the integral calculus, we can specify a complete solution of this problem for a
large class of functions. We place the corresponding theory of Fourier series in
the general framework of the theory of orthogonality and inner product spaces.
Thereby we achieve not only clarity and simplicity but also lay the foundation for
a number of concrete applications, many of which you can expect see elsewhere.
Naturally, we will also calculate some classical Fourier series explicitly, leading
to some surprising results. Among these is the formula of Euler, which gives an
explicit expression for the ¢ function at even arguments; another is an interesting
expression for the sine as an infinite product.

Up to this point, we have will have concentrated on the integration of jump
continuous functions on compact intervals. In Section 8, we will further extend
the domain of integration to cover functions that are defined (and integrated)
on infinite intervals or are not bounded. We content ourselves here with simple
but important results which will be needed for other applications in this volume
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because, in Volume III, we will develop an even broader and more flexible type of
integral, the Lebesgue integral.

Section 9 is devoted to the theory of the gamma function. This is one of
the most important nonelementary functions, and it comes up in many areas of
mathematics. Thus we have tried to collect all the essential results, and we hope
you will find them of value later. This section will show in a particularly nice way
the strength of the methods developed so far.
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1 Jump continuous functions

In many concrete situations, particularly in the integral calculus, the constraint of
continuity turns out to be too restrictive. Discontinuous functions emerge natu-
rally in many applications, although the discontinuity is generally not very patho-
logical. In this section, we will learn about a simple class of maps which contains
the continuous functions and is especially useful in the integral calculus in one
independent variable. However, we will see later that the space of jump continu-
ous functions is still too restrictive for a flexible theory of integration, and, in the
context of multidimensional integration, we will have to extend the theory into an
even broader class containing the continuous functions.

In the following, suppose

e E:=(E,||-||) is a Banach space;
I := [e, (] is a compact perfect interval.

Staircase and jump continuous functions
We call 3 := (ayg,...,a,) a partition of I, if n € N* and
a=qgp<a<--<a,=p0.

If {ao, . .., an} is a subset of the partition 3 := (8o, . . ., Bk), 3 is called a refinement
of 3, and we write 3 < 3.

The function f: I — F is called a staircase function on [ if I has a partition
3 := (ao,...,an) such that f is constant on every (open) interval (oj—1, ;). Then
we say 3 is a partition for f, or we say f is a staircase function on the partition 3.

4
L]
—
—_—
L]
L]
@ E —
—
' } } + }
a = aop oy a2 as as as=/f3

A staircase function

If f: I — E is such that the limits f(a + 0), f(8 —0), and

flz£0):= lm f(y)

y#

exist for all z € I, we call f jump continuous.! A jump continuous function is
piecewise continuous if it has only finitely many discontinuities (“jumps”). Finally,

INote that, in general, f(z + 0) and f(z — 0) may differ from f(z).
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we denote by
7(I,E), S(I,E), SC(I,E)

the sets of all functions f: I — FE that are staircase, jump continuous, and piece-
wise continuous, respectively.?

E=R E=R
A A
a B a B
A piecewise continuous function Not a jump continuous function

1.1 Remarks (a) Given partitions 3 := (ao,...,a,) and 3 := (B, ..., Bm) of I,
the union {ap,...,a,} U{Bo,...,Bm} will naturally define another partition 3Vv3
of I. Obviously, 3 <3Vv3and 3 <3V3. Infact, < is an ordering on the set of
partitions of I, and 3 V 3 is the largest from {3, 3}.

(b) If f is a staircase function on a partition 3, every refinement of 3 is also a
partition for f.

(c) If f: I — FE is jump continuous, neither f(z+0) nor f(z — 0) need equal f(z)
for z € I.
(d) S(I1,E) is a vector subspace of B(I, E).
Proof The linearity of one-sided limits implies immediately that S(I,E) is a vector
space. If f € S(I,E)\B(I, E), we find a sequence (z.) in I with

[|[f(zn)||>n forneN. (1.1)

Because I is compact, there is a subsequence (zn,) of (z») and z € I such that z,, — =
as k — oo. By choosing a suitable subsequence of (zn,), we find a sequence (yn),
that converges monotonically to .2 If f is jump continuous, there is a v € E with
lim f(y») = v and thus lim || f(yn)|| = ||v|| (compare with Example III1.1.3(j)). Because
every convergent sequence is bounded, we have contradicted (1.1). Therefore S(I,E) C
B(I1,E). =

(e) We have sequences of vector subspaces
T(I,E)c SC(I,E)cS(I,E) and C(I,E)C SC(I,E) .

(f) Every monotone function f: I — R is jump continuous.

2We usually abbreviate 7 (I) := 7T (I, K) etc, if the context makes clear which of the fields R

or C we are dealing with.
3Compare with Exercise 11.6.3.



