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On Latin Arrays’

Tao Renji
Institute of Software., Academia Sinica
(Beijing, 100080)

Absiract

This paper gives a survey on Latin arrays. We first discuss
enumeration of Latin arrays, and present some results on num-
bers of Latin arrays and of isotopy classes. Then we deal with
independence of Latin array and give a generation method of
Latin arrays by means of permutations with the same indepen-
dent degrees. Finally, generation of linearly independent permu-
tations is discussed and some algorithms are mentioned.

1 Enumeration of Latin arrays

The problem of designing one —key cryptosystems which can be im-
plemented by finite automata without expansion of the plaintext and with
bounded propagation of decoding errors lies on choosing suitable parame-
ters such as the size of alphabets and the length ¢ of ciphertext history and
designing three components in the canonical form (Fig. 1) — an au-
tonomous finite automaton Ma, a transformation A and a permutation
family g, such that the systems are both efficient and securel'? * *J, For
studying the family of permurtations used in this canonical form, the con-
cept of Latin array is introduced and their enumeration and generation
problems are investigated'® *.

Let N={a,, ***,a,}be an n element set. Let A be an n X7k matrix on
N. If each element of N occurs exactly once in each column of A and &
times in each row of A, then A is said to be an (n, k) — Latin array.

Let A be an (n, k) — Latin array. If each column of A occurs exactly

* Supported by the National Natural Science Foundation.
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- times in columns of A repeatedly, then A is said to be an (n, k,7r)—
Latin array.

Latin arrays in a kind of generalization of Latin squares.

Let A and B be n Xm matrices on N. If B can be obtained from A by
rearranging rows, rearranging columns and renaming elements, then A
and B is said to be isotopic.

Clearly, if A is an (n, k) — Latin array and isotopic with B, then B is
an (n, k) — Latin arrayj and if A is an (n, k, r)— Latin array and isotopic
with B, then Bis an (n, k, r)— Latin array.

For (n, k) — Latin arrays or (n, k, r)— Latin arrays, the equivalence
class partitioned by isotopy relation is called isotopy class.

By U(n, k) denote the number of all (n, &) — Latin arrays, U(n, k,
r) the number of all (n, k, r) — Latin arrays, I(n, k) the number of all
isotopy classes of (n, k) — Latin arrays, and I(n, k, r) the number of all
isotopy classes of (n, k, r)— Latin arrays. we have'™
Proposition 1

(a). I(n,k,r)=I(n, k/r, 1);

(b). Un, k, r)=U(n, k/r, D(nk/r)! /(nk/r)! (r1)™"
Proposition 2

Let 1<<k<<(n—1)!. We then have:

(a). I(n, k, D= T(n, (n—1)! —k,1);

(b). U(n, (n—1)! —k, D= Uln, k, D(n! —nk)! /(nk)!;

(©). Itn, (a—D1, D=1, Uln, (a—D1!, D=nD]I.

Yi-c L Yi-2 yc—x‘ Yi

wy

i

Gu, (i) —

h(yl'-cy ey Yi-1, t.')

t;

M,

Fig.1 (a). Encoder M



Yi-e ._.%—2‘ I!/i—1‘ l I

w; i

h(yi—mn'sy‘—l)ti) g,;‘.l(y‘)___.

t;

M,

Fig.1 (b). Decoder M'
Theorem 1
1(2,k)=1, U2,k)=02k)! /(k!)*, [(2,1:1)=1, U2,1;1)=2;
1(3,1,1)=1, U(3,1,1)=12,

AT

1(3.1():{(1‘“)/“ ki ndd UG.k)=3%_,(3k)! /(h! (k—h)1)?,
k/2+1 otherwise,

14, 1)=2, UM, 1)=(41)%, 14,1, 1)=2, U(4,1,1)=(41)?,

1(4,2)=11, U(4,2) = 12640320 1(4,2,1)=6, U(4,2,1)=10281600,

1(4,3)=46, U(4,3)=805929062400, 1(4,3,1)=11, U(4,3,1)=306561024000,

1(4,4)=201, U(4,4)=287285061904040000,
1(4,4,1)=6, U(4,4,1)=10281600X 16! /8!.

A program for generating the representatives of (n, k) —Latin array’s 1so-
topy classes was run on a JAGER386 computer and the following results
was reported. [ 7]
Theorem 2
1(4,5)=831; 1(5,2)=23864.

An (n,k)—Latin array is said to be an involutive (n,k)— Latin array
if each column corresponds to an involution.

By U’ (n,k) denote the number of all involutive (n,k) — Latin arrays.
In [8], U (N,K) for 2<n<{5 and the following results are given.
Theorem 3
U'(6,1)=457920, U'(7.1)=31298400, U’ (8,1)=427379500800.

2 Linear independent Latin arrays

Let A be an (n,k) — Latin array. Denote r={log, nk|. The vector [u,,
—_ 3 s



+,u, ] over GF(g) is said to be column label of column (u,q ' +u,q *+
«++u,)+1 of A.

Definition Let A be an (n,k)—Latin array. Let x € {1,**,n} and vy
€ N. If components of column labels of columns of A in which the ele-
ments at row x are y satisfy some 7-ary polynomial with degree < ¢ over
GF(g), then A is said to be c-independent with respect to (x,y), other-
. wise, A is said to be c-independent with respect to (x,y). If Ais c-depen-
dent with respect to (x,y) for any x € {1,*-,n} and y € N, then A is
said to be c-dependent. If A is c-independent with respect to (x,y) for any
x € {1l,~,n}and y € N, then A is said to be c-independent. 1f A is c-
dependent and not (c—1)-dependent, then c is said to be dependent degree
of A, denoted by ¢4. If A is c—independent and not (¢—1)-independent,
then ¢ is said to be independent degree of A, denoted by I,.

Linearly independent Latin arrays are useful for simplifying a cryp-
tosystem. -

Proposition 3
Let A be an (n, k) — Latin array. Let ' =[log, nk|, and ¢,(n,k)=

min C[l+(;)+“'+(: Y>>k ]. Then we have ca<<c,(n k).

We use R; to denote the vector space of dimension » over GF(¢). For
any nonnegative integer m, let f, be a one—one mapping from R} to {0,
1, +q"—1} defined by f,. (215 =y x.) =2:¢" ' +2,9" '+ +x,. Let @
and ¢ be two permutations on R}, and ¢a transformation on R}. Denote @
= (¢ ,9,%). Construct a ¢’ X ¢” matrix Agover R as follows: the element
at row i+1 and column j+1 is ¢ (w,) @ (g (w,) @ /. '), where (w,,
wy) = f4,"(;), and w, and w, have dimension 7.
Proposition 4

Asis a (¢ +q") — Latin array if and only if ¢is a permutation.

Whenever ¢ is a permutation, Ae is said to be (q",q") — Latin array of
Q.

Definition Let ¢ be a transformation on R, with component functions
@ 2@, For any nonnegative integer c, if there is a 2r—ary polynomial A
over GF(q) such that

h(xyseoe sy @Iy 0T, ) s s (X 92005 2,)) = 0,1, 502, € GF(q),

then @is said to be c-dependent , and h is said to be a dependent polynomial
of ¢. If ¢is not c-dependent, then ¢is said to be c-independent. 1f ¢is c-

*4_



dependent and (¢c—1) —independent, then ¢ is said to be dependent degree
of ¢. denoted by ¢,, and ¢—1 is said to be independent degree of ¢, denot-
ed by I..

An affine transformation on R, means xC @ b, where C is a r X» ma-
trix over GF(g), b is a row vector of dimension r over GF (g).

Theorem 4 '

Let ¢ be a transformation on R, and p and q be two invertibe offine
transformations on R;,. Let ¢ (x)=p(p(q(x))), x € R,. Then we have ¢,
=c¢, and lo=1¢.

Theorem 5

Let @ be a transformation on R, and ¢ and ¢ be two invertible affine
transformations on R;. Let = (¢ ,¢,¢), and Ag be the (¢ ,q") — Latin ar-
ray of @. Then we have: (1). cap=ces (2). Tag=1,, (3). Cao=1I10+1.

Denote ¢,(r)=c,(q"+q"). We have
Proposition 5

For any transformation ¢ on R, we have ¢, <c,(r).

Theorem 6
For q=2, 1<<\r<{6.there is a permutation ¢ on R} such that c,= ¢,(r).

3 A kind of linear independent permutations

It is known that all »—ary functions on GF(g) is a vector space over
GF(g) and has a basis {Py "2k} skt sk, =0,1,+,¢g—1),where P, ,
k1
1

goe -k,(.l‘l [ R sI,):I "'Ifr. Let

r -
= LI)’HN--CJQv[)“(\...\;l e qu, 1)(g— 1) (g—1)(g—2) '[)(qﬂ 1(g—1)w(g—1)(g—1) s

then we can formally express
f(flv"' yx,) = Iy,

where 4 is a column vector of dimension ¢’ over GF (¢) determined unique-
ly by f and referred as polynomial coordinate of f.""

Let ¢ be a transformation on R; with component functions ¢, ,¢.
Let b, is the polynomial coordinate of ¢, i=1,++,7. The ¢" X matrix [b,,
,b, ] is called polynomial coordinate matriz of ¢ and denoted by B,. By
B, denote the submatrix of B, obtained by deleting its rows 1,1+¢’,
1=0,1,°,r—1.
Theorem 7

Cy> 1 if and only if columns of B, are linearly independent.

Let s<<r. ¢ be a transformation on R}, and A, a (r—:) —ary function
on GF(g)y i=1,,r—s. Let ¢;»***y¢c,-,€ GF(g). Define a transforma-
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tion ¢ of which component functions are
@ (xyyevx)=cix1+h (xgy°52,)
@ (xl oy x.)=coxy+ho(x3yr52,)

Bss (01 959 905 ) 6= T B (Frcy 9909 5 D'y
Gr—s+1(x1s v x.)=F 1 (Zr—ss19°*11,)»

A R, - S,
Zysrsx, €GF(q),
where ¢ ,++,¢" are the component functions of ¢. Denote such a ¢ by Rec
(ﬂd ) h1 g% ’hr*_\ 9C19°°° 9()*:).
Lemma 1 _
If ¢ is a permutation on R, and ¢;#0,i=1,+*,r —s.then Rec(¢ .h,,
sosh,—)scysrsCoosis a permutation on R;.
Theorem 8
Let s <r, ¢ is a permutation on R, and ¢, >>1. Then elements of
D' ={|D| Ce>, ¢=R€c(¢ sy hysesh,_sCly+,C, )
for some h;y ¢;70s i=1,*yr—s}
are pemutations on R, and number of elements of @' is

=

(q_ 1 )r*:q(rfx)(r+x+ /2 H (q,," 14 _q,)

i=s+1
Corollary 1

Let s<<r, ¢ be a permutation on R; and ¢;>1. Let B be a ¢’ Xr ma-
trix over GF (g) satisfying following conditions: the submatrix consisting
of elements in the first ¢° rows ang the last s columns of B is By jelements
in the last ¢ —¢’ rows and the last s columns of B are zeros; for any j, 1<<
j<r—s, in the column j of B, element at row q" '+1 is nonzero dnd ele-
ments in the last ¢'—¢  ’—1 rows are zeros; for any j, 1<<;<<r—s—1, in
the column j of B, a nonzero element is included in rows ¢ /" '+2to ¢ 7;
and the first column of the submatrix which consists of elements in the
first ¢ rows and the last s+ 1 columns of B cannot be linearly expressed by
the rest. If B is the polynomial coordinate matrix of ¢, then ¢is a permu-
tation on Rj and ¢,>1. Furthermore, number of such permutations is

r—1

(q—l)”’(q"ﬁ*q’) ﬂ (q"' qu-f
i=5+1

-1>



4 Generation of linear independent permutations

. r ’ -
Let ¢ be a transformation on R;. Let W, be a (.) X matrix over GF(2) of
i
which rows consist of all difference vectors of dimension r with weight 7, ¢

=0,1,+,7. Denote the vector with components 1 of dimension (r.) by I..
1
For any i, 0<{/<(r, define a (:) X 7 matrix U; over GF(2) of which row

j is the value of g on row j of W,, Oéjg(:)‘ Define a 2" X (1+47) matrix

IU LL’\' LY()
o |l Wi U,
w, U,

Denote the submatrix of columns 2 to »+1 of @ by W, and the submatrix
of the last » columns of @ by U..

For convenience sake, we rearrange rows of W, so that it is the iden-
tity matrix.
Lemma 2

(a).co>> 1if and only if columns of @ are linearly independent. (b). @is invertible
if and only if rows of U, are distinct.

By E, denote the (’t‘) X (:) identity matrix. Let the 27X 2" matrix

M1, W,
I, W,
I, W, E,

0 W, 0 E,

P= I, W, 0o 0 E,
I, W,, 0 0 0 E,_,
I' W, 0 0 o0 0 E.J

where I, =1,if jis even, I, =0I, otherwise. It is easy to verify that P is
nonsingular and



I, W,
I, W, E
I, W, o E,

Lemma 3
P® is in the form of

Po=|0 o V,

s r . 4
where Vo=Ug, V,isa ()X mairix, i=1, *,r.
i

Denote the last r columns of P® by V,. Denote the submatrix of V,
obtained by deleting its first 1+7 rows by V.
Lemma 4

C,> 1 if and only if columns of V. are linearly independent.

Lemma 5
For any i, 1<(i<(r, and any r Xr permutation matrix Q over GF(2),

. - r r s <
there exists uniquely a (i ) X (i ) permutation matrix Pig such that Pq W, =

Wia.
Let
1,
Q
Dq = Py

Py

G, ={Dy|Q is a r Xr permutation matrix over GF(2) }.

It is easy to verify that G, is a group and isomorphic to the group
consisting of all » X» permutation matrices over GF(2) under the isomor-
phism P, Q.

Let G,={<Dgq, 6, C> |Qis a r Xr permutation matrix over GF(2),
¢ is a row vector of dimension r over GF(2), C is a r Xr nonsingular ma-
trix over GF(2)}. Let. be an operation on G, defined by
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<Dq» 8, C>. < Dg, 8, C' >=<DgDg, P8, C'C>.
It is easy to verify that << G,,. > is a group.
Any 2" Xr matrix V, partition it into blocks

v |V
v,
where V, has (:.‘) rows, 0</<(r. For any <Dy, 8, C> in G,, define
é ) 0 C
<D .C>=Dv@® | ) he=nyve@ | Y
0 0

V and V' are said to be equivalent if there is << Dg, 8, C > in G, such that
V<IJQ.5.('> :V/ .
Lemma 6

Assume that V=" =V’

=V'. then we have

P='V' = Do(P-'V)C @ ‘?:C
oC

Denote the submatrices of V and of V' obtained by deleting their first 1
+7r rows by V_and V' _, respectively.
Theorem 9

Assume that V and V' are equivalent. Then we have: (a). Columns of V _ are lin-
early independent if and only if columns of V' _ are linearly independent; (6). Rows of
P 'V are distinct if and only if rows of P~'" are distinst.

By S(V,.V,) denote the set of all 2" X7 matrices over GF(2) satisfy-
ing the following conditions; the first row of V is V,, the submatrix of
rows 2to 1+r of Vis V|, columns of V _ are linearly independent, and
rows of P~ 'V are distinct.

Corollary 2

Let & be a row vector of dimension r over GF(2), Q a » Xr permuta-
tion matrix over GF(2), and C a » Xr nonsingular matrix over GF (2).
Then we have

S((V,@NHC, QV,C) = VROV € SV, VDI,
and [S((V,@C, QV,C)|=|S(V,, V)|

For any positive integer r, Denote G,"= {<Q,C>}|Q is a » Xr per-
mutation matrix over GF (2), C is a » X r nonsingular matrix over GF
(2)}. Let be an operation on G,” defined by <Q,C>. <Q',. C'>=<
QQ', C'C>. Tt is easy to verify that <<G,”,. > is a group. For any rXr

_9_



matrix V, over GF(2) and any <Q,C>> in G,”, denote V¥~ =QV ,C. V,
and V79 are said to be equivalent under G,”. For r Xr matrices over GF
(2), representatives of equivalences under G,” are said to be canonical

forms under G,". [11]

Notice that both the property that V', has no zero row and the proper-
ty that rows of V, are distinct keeps unchanged under equivalence. Clear-
ly, S(V,, V)50 yields that V, has no zero row and that rows of V, are
distinct. From Corollary 2, it is sufficient to compute S(0, V), where V,
ranges over canonical forms under group G,” of which rows are distinct and
nonzero. For example, in case of »=4, V| has only three alternatives:

1 0 0 0 1 0 0 0 1 0 0 O
0 1 0 0 0 1 0 0 01 0 O
00 1 0['[0o 01 0[’l0 0 1 0o
0 0 0 1 1 1 0 O 1 1 1 0
4.1 S(V,,. VD
Lemma 7
Let
1,
==
Py
be a 27X 2" permutation matrizx. Assume that
Ly 0 0
R - {0 B 0}
o W P
where
2
W' =W @ P/W, W= “:/3
w,
Then we have PxP~'= P~ 'R, and R satisfying the above equation is uniquely deter-
mined by Pg.
Theorem 10

The following two conditions are equivalent: (1). the first r+1 rows of V and of V'
are the same, and P~'V and P~ 'V' are different only in a row permutation;

(2). the first r+1 rows of V and of V' are the same and there exists a (2 —1—r) X (2’
—1—7) permutation matrix P'x such that

V_= (E @ P YWV, ® P'WV_,
where V_ and V' _ are the submatrices of V and of V' obtained by deleting their first 1+



