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Preface

Gavril Farkas and Ian Morrison

The title of these volumes might lead unwary readers to expect an encyclopedic
survey for experts in the study of moduli problems in algebraic geometry. What they
will discover is rather different. Our aims here are, first, to clarify the audience that
we hope the Handbook will serve and the approach it does takes to its subject and,
second, to thank all those who have assisted us in helping it realize these aims.

To begin with, a bit of history. The idea for a Handbook of Moduli originated
in a discussion between David Mumford and Lizhen Ji at Michigan in 2006. Lizhen
and David produced a draft table of contents that was circulated at the Symposium
marking David’s retirement from Brown in 2007. The Handbook was originally to
have been edited by Ching-Li Chai and Amnon Neeman, but the demands of their
work with Takahiro Shiota as editors of the second volume of Mumford’s Collected
Papers took priority and, at their urging, we agreed to take over editorship in the
spring of 2009.

We quickly reached the conclusion that what was needed for many topics was
not a discussion of the latest results aimed at specialists, but a survey aimed at a
broad community of producers (and even some consumers from cognate areas) of
algebraic geometry, most of whom had little prior familiarity with the area. Our
goal became a Handbook that would introduce the techniques, examples and results
essential to each topic, and say enough about recent developments to prepare the
reader to tackle the primary literature in the area. We particularly sought to elicit
contributions that illustrated “secret handshakes”, yogas and heuristics that experts
use privately to guide intuition or simplify calculation but that are replaced by more
formal arguments, or simply do not appear, in articles aimed at other specialists.

For many topics, the Handbook succeeds much better than we dared to hope.
The credit is due entirely to the hard work of the Handbook’s many authors in
producing articles that conformed to the goals we had set. Again and again, we were
delighted to find that authors, instead of taking the easy course of cutting and pasting
from earlier surveys and primary references, had made the substantially greater effort
to write the original treatments needed to bridge gaps in the literature and make
important problems accessible to a wide audience for the first time.

We expect that they will reap a just reward and that their articles will be widely
read and referenced. Here we want to offer them not only our sincerest thanks,
but also those of the Handbook’s readers, for their exceptional generosity. Many
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Handbook articles were also improved by extensive and thoughtful referees’ reports.
We are grateful for all work that the referees did to improve the Handbook and take
this opportunity to thank them collectively on behalf of the contributors.

We must, however, disclaim that the Handbook’s coverage is often incomplete,
in extreme cases, non-existent. The blame for these gaps is mostly ours. When we
solicited contributions to the Handbook, each invitation was accompanied by a
suggested topic, and we selected contributors who we thought would be able to cover
their topics in the spirit discussed above. The results reflect both our knowledge and
taste—of topics and of experts in them—and also, in some cases, our ignorance.

In some areas, we found it easy to produce candidate contributor-topic pairs,
and to recruit the contributors we had identified. The Handbook's discussion of, for
example, moduli spaces of curves is, therefore, particularly complete—some will say,
not without a certain justice, excessive.

In other areas, we had more difficulty both in identifying and in enlisting
candidates. A few of the more obvious gaps arose when authors who had accepted
our invitation backed out after it was too late to find replacements. A more deeply
felt loss—one that impacts the whole subject of moduli—was the untimely death of
Eckart Viehweg, who had been one of the first to agree to contribute.

We also omitted a few topics as a courtesy to the authors of monographs devoted
to them that we knew to be in preparation, others because papers treating them in
the spirit we were seeking had recently appeared, and yet others because we felt that
they were developing so rapidly that any contribution dealing with them would have
a limited shelf-life. In hindsight, not all of these decisions were well taken.

As a result, the Handbook's treatment of moduli has some major lacunae (mir-
ror symmetry, wall crossing formulae) and there are other topics (moduli of sheaves
and bundles) which are discussed but not in the depth that their importance merits.
We apologize to readers who may have hoped to find more about these subjects
in the Handbook, and (with Lizhen’s encouragement) we challenge experts who
feel that their areas deserve a fuller exposition to offer him proposals for additional
Handbook volumes devoted to them.

The Handbook also benefitted from the efforts of many other colleagues. Am-
non Neeman showed considerable doggedness in recruiting us to succeed him and
Ching-Li as editors. Scott Wolpert provided valuable advice on the cat-herding el-
ements of the editor’s job. Dave Bayer helped enormously in setting up the final
production process both to automate complex and error prone operations and to
prevent inconsistencies between the BIX installations on our home systems and
those at Higher Education Press.

Brian Bianchini, International Press’ General Manager, made sure that we had
the resources we needed throughout the Handbook's growth from the single volume
originally projected to the present three. The Advanced Mathematics series editor,
Lizhen Ji, was always ready to answer our questions, help with practical difficulties,
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and adjust his schedule for the series to adapt to changes in ours. Liping Wang and
her production staff at the Higher Education Press were unfailingly accommodating
and helpful to us in resolving BIjX issues—even reTjXing several submissions to
bring them into conformity with the Handbook style—and made every effort to
ensure that the appearance of the Handbook volumes was up to the standard of
their contents.

To all of them, and to many others who provided more informal help, we here
offer our sincerest thanks.

Humboldt Universitit, Institut fiir Mathematik, Unter den Linden 6, 10099 Berlin
E-mail address: farkas@mathematik.hu-berlin.de

Department of Mathematics, Fordham University, Bronx, NY 10458
E-mail address: morrison@fordham.edu
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Logarithmic geometry and moduli

Dan Abramovich, Qile Chen, Danny Gillam, Yuhao Huang, Martin Olsson,
Matthew Satriano, and Shenghao Sun

Abstract. We discuss the role played by logarithmic structures in the theory of

moduli.
Contents
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6 Stacks of logarithmic structures 23
7 Log deformation theory in general 29
8 Rounding 33
9 Logde Rham and Hodge structures 38
10 The main component of moduli spaces 46
11 Twisted curves and log twisted curves 49
12 Log stable maps 54

1. Introduction

Logarithmic structures in algebraic geometry

It can be said that Logarithmic Geometry is concerned with a method of finding
and using “hidden smoothness” in singular varieties. The original insight comes from
consideration of de Rham cohomology, where logarithmic differentials can reveal
such hidden smoothness. Since singular varieties naturally occur “at the boundary”
of many moduli problems, logarithmic geometry was soon applied in the theory of
moduli.

Foundations for this theory were first given by Kazuya Kato in [27], following
ideas of Fontaine and Illusie. The main body of work on logarithmic geometry

2000 Mathematics Subject Classification. Primary 14A20; Secondary 14Dxx.
Key words and phrases. moduli, logarithmic structures,



2 Logarithmic geometry and moduli

has been concerned with deep applications in the cohomological study of p-adic
and arithmetic schemes. This gave the theory an aura of “yet another extremely
complicated theory”. The treatments of the theory are however quite accessible.
We hope to convince the reader here that the theory is simple enough and useful
enough to be considered by anybody interested in moduli of singular varieties,
indeed enough to be included in a Handbook of Moduli.

Normal crossings and logarithmic smoothness

So what is the original insight? Let X be a nonsingular irreducible complex
variety, S a smooth curve with a point s and f : X — S a dominant morphism smooth
away from s, in such a way that the fiber f~'s = X; = Y;U...UY,, isa reduced simple
normal crossings divisor. Then of course Qx /s = Qx/f*Qs fails to be locally free at
the singular points of f. But consider instead the sheaves Qx (log(Xs)) of differential
forms with at most logarithmic poles along the Y;, and similarly Qg(log(s)). Then
there is an injective sheaf homomorphism f*Qg(log(s)) — Qx(log(Xs)), and the
quotient sheaf Qx (log(Xs))/Qs(log(s)) is locally free.

So in terms of logarithmic forms, the morphism f is as good as a smooth morphism.

There is much more to be said: first, this Qx(log(Xs))/Qs(log(s)) can be
extended to a logarithmic de Rham complex, and its hypercohomology, while not
recovering the cohomology of the singular fibers, does give rise to the limiting Hodge
structure. So it is evidently worth considering.

Second, the picture is quite a bit more general, and can be applied to all toric
and toroidal maps between toric varieties or toroidal embeddings (with a little caveat
about the characteristic of the residue fields). So there is some flexibility in choosing
X—S.

The search for a structure

Since we are considering moduli, then as soon as we consider X — S as above
we must also consider the normal crossings fiber X; — {s}. But what structure should
we put on this variety? The notion of differentials with logarithmic poles along X is
not in itself intrinsic to X;. Also the normal crossings variety X is not in itself toric
or toroidal, so a new structure is needed to incorporate it into the picture.

One is tempted to consider varieties which are assembled from nice varieties by
some sort of gluing, as normal crossings varieties are. But already normal crossings
varieties do not give a satisfactory answer in general, because their deformation
spaces have “bad” components. Here is a classical example: consider a smooth
projective variety Z such that Pic’(Z) is nontrivial. Let L be a line bundle on Z and
set Y = P(O@ L), with zero section Z C Y. Let X be the blowingup of Zx 0 C Y x A,
We have a flat morphism f : X — A! with fiber Xq = f~1(0) ~ YUY, where the
two copies of Y are glued with the zero section of one attached to the co section of
the other.
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So clearly X is a normal crossings variety with a nice smoothing to a copy of
Y. But there are other deformations: the variety Y UY also deforms to Y U Y’ where
Y =P(O&L’) and L’ a deformation of the line bundle L. And it is not hard to see
that YU Y’ does not have a smoothing. Ideally one really does not want to see this
deformation Y U Y’ in the picture - and ideally X, should have a natural structure
whose deformation space excludes Y UY’ automatically.

Such a structure was proposed by Friedman in [10], where the notion of d-
semistable varieties was introduced. This structure is somewhat subtle, and while it
solves the issue in this case, it is not quite as flexible as one could wish. As we will
see in Section 5, logarithmic structures subsume d-semistability and do provide an
appropriate flexibility.

Organization of this chapter

In this chapter we briefly describe logarithmic structures and indicate where
they can be useful in the study of moduli spaces. Section 2 gives the basic definitions
of logarithmic structures, and Section 3 discusses logarithmic differentials and log
smooth deformations, which are important in considering moduli spaces.

Section 4 gives the first example where logarithmic geometry fits well with
moduli spaces: the moduli space of stable curves is the moduli space of log smooth
curves. The issue of d-semistability does not arise since a nodal curve is automatically
d-semistable. So the theory for curves is simple. Turning to higher dimensions,
Section 5 shows how d-semistability can be described using logarithmic structures.

If one is to enlarge algebraic geometry to include logarithmic structures, the
task of generalizing the techniques of algebraic geometry to logarithmic structure can
certainly seem daunting. In Section 6 we show how to encode logarithmic structure
in terms of certain algebraic stacks. This allows us to reduce various constructions to
the case of algebraic stacks. (One can argue that the theory of stacks is not simple
either, but at least in the theory of moduli they have come to be accepted, with some
exceptions [34].)

In Section 7 we make use of logarithmic stacks to describe the complexes which
govern deformations and obstructions for logarithmic structures even in the non-
smooth case. This comes in handy later. For instance, even when studying moduli
of log-smooth schemes, the moduli spaces tend to be singular, and their cotangent
complexes are necessary ingredients in constructing virtual fundamental classes.

Section 8 describes a beautiful construction, similar to polar coordinates, in
which families of complex log smooth varieties give rise canonically to families of
topological manifolds. Differential geometers have used polar coordinates on nodal
curves to “make space” for monodromy to act by Dehn twists. Rounding (using
Ogus'’s terminology) is a magnificent way to generalize this.

The immediate implications of logarithmic structures for De Rham cohomology
and Hodge structures are described in Section 9.
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We conclude by describing three applications, where logarithmic structures
serve as the proverbial “magic powder” (term suggested by Kato and Ogus) to clarify
or remove unwanted behavior from moduli spaces.

Section 10 describes a number of cases where the main irreducible component
of a moduli space can be separated from other “unwanted” components by sprinkling
the objects with a bit of logarithmic structure.

In Section 11 we introduce twisted curves, a central object of orbifold stable
maps, and show how logarithmic structures give a palatable way to construct the
moduli stack of twisted curves.

Section 12 gives background for the work of B. Kim, in which Jun Li’s moduli
space of relative stable maps, with its obstruction theory and virtual fundamental
class, is beautifully simplified using logarithmic structures.

Notation

Following the lead of Ogus [45], we try whenever possible to denote a log-
arithmic scheme by a regular letter (such as X) and the underlying scheme by X.
When this is impossible we write X for the underlying scheme and (X, Mx) for a
logarithmic scheme over it.
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2. Definitions and basic properties

In this section we introduce the basic definitions of logarithmic geometry in
the sense of [27]. Good introductions are given in [27] and [45]. Further technique
is developed in [12].

Logarithmic structures
The basic definitions are as follows:
Definition 2.1. A monoid is a commutative semi-group with a unit. A morphism

of monoids is required to preserve the unit element. We use Mon to denote the
category of Monoids.
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Definition 2.2. Let X be a scheme. A pre-logarithmic structure on X is a sheaf of
monoids My on the étale site X, combined with a morphism of sheaves of monoids:
o : Mx — Ox, called the structure morphism, where we view Ox as a monoid
under multiplication. A pre-log structure is called a log structure if «'(0%) = 0% via
«. The pair (X, Mx) is called a log scheme, and will be denoted by X. - B

Note that, given a log structure Mx on X, we can view O} as a subsheaf M.

Definition 2.3. Given a log scheme X, the quotient sheaf My = M/ 0% is called the
characteristic of the log structure Mx.

Definition 2.4. Let M and N be pre-log structures on X. A morphism between them is
a morphism M — N of sheaves of monoids which is compatible with the structure
morphisms.

How should one think of such a beast? There are two extreme cases:

(1) If an element m € M has x(m) = x # 0, one often thinks of m as some
sort of partial data of a “branch of the logarithm of x”. Evidently no data is
added if x is invertible, but some is added otherwise. In particular, we will
see later that m permits us to take the logarithmic differential dx/x of x.

(2) If x(m) = 0itis often the case that it m comes by restricting the log structure
of an ambient space, and serves as the “ghost” of a logarithmic cotangent vec-
tor coming from that space. So the log structure “remembers” deformations
that are lost when looking at the underlying scheme.

The log structure associated to a pre-log structure
We have a natural inclusion
i: (log structures on X) — (pre-log structures on X)

by viewing a log structure as a pre-log structure. We now construct a left adjoint.
Let o : M — Ox be a pre-log structure on X. We define the associated log structure
M* to be the push-out of

a1 (0%) — M

Ox
in the category of sheaves of monoids on X, endowed with

M = Ox (a,b) = x(a)b (a € M, b € 0%).

In this way, we obtain a functor a : (pre-log structures on X) — (log structures
on X). From the universal property of push-out, any morphism of pre-log structure
from a pre-log structure M to a log structure on X factor through M uniquely.

Lemma 2.5. [45, 1.1.5] The functor a is left adjoint to i.
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Example 2.6. The category of log structures on X has an initial object, called the
trivial log structure, given by the inclusion 0% — Ox. It also has a final object, given
by the identity map Ox — Ox. Trivial log structures are quite useful as they make
the category of schemes into a full subcategory of the category of log schemes (see
Definition 2.9). The final object is rarely used since it is not fine, see Definition 2.16.

Example 2.7. Let X be a regular scheme, and D C X a divisor. We can define a log
structure M on X associated to the divisor D as

M(U) = {ge0x(U): gluyp € Ox(U\D)} c Ox(U).

The case where D is a normal crossings divisor is special - we will see later that
it is log smooth.

Note that the concept of normal crossing is local in the étale topology. This is
one reason we use the étale topology instead of the Zariski topology.

Example 2.8. Let P be a monoid, R a ring, and denote by R[P] the monoid algebra.
Let X = Spec R[P]. Then X has a canonical log structure associated to the canonical
map P — R[P]. We denote by Spec (P — R[P]) the log scheme with underlying X,
and the canonical log structure.

The inverse image and the category of log schemes

Let f : X — Y be a morphism of schemes. Given a log structure My on Y,
we can define a log structure on X, called the inverse image of My, to be the log
structure associated to the pre-log structure f~!(My) — f~1(Oy) — Ox. This is
usually denoted by f*(My). Using the inverse image of log structures, we can give
the following definition.

Definition 2.9. A morphism of log schemes X — Y consists of a morphism of underlying
schemes f : X — Y, and a morphism f° : f*My — Mx of log structures on X.
We denote by LSch the category of log schemes.

Example 2.10. In Example 2.8, the log structure on Spec (P — R[P]) can be viewed
as the inverse image of the log structure on Spec (P — Z([P]) via the canonical map
Spec (R[P]) — Spec (Z[P]).

Example 2.11. Let k be a field, Y=Spec k[x;, - - , xn], D=V(x; - - - x,). Note that D
is a normal crossing divisor in Y. By Example 2.7, we have a log structure My on
Y associated to the divisor D. In fact, My can be viewed as a submonoid of Oy
generated by 0y and {x1, "+, Xr}.

Consider the inclusion j : p = Spec k < Y sending the point to the origin
of Y. Then j*My = k* & N7, and the structure map j*M — Ox is given by
(a,my, -+ ,ny) = a- 0™+ where we define 0° = 1 and 0™ = 0 if n # 0.
Such point with the log structure above is call a logarithmic point; when r = 1 we call
it the standard logarithmic point.



