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Preface

As is well known, Pontryagin’s maximum principle and Bellman’s dynamic
programming are the two principal and most commonly used approaches in
solving stochastic optimal control problems.* An intcresting phenomenon
one can observe from the literature is that these two approaches have been
developed separately and independently. Since both mcthods are used to
investigate the same problems, a natural question onc will ask is the fol-
lowing:

(Q) What is the rclationship betwecn the maximum principle and dy-
namic programming in stochastic optimal controls?

There did exist some researches (prior to the 1980s) on the relationship
between these two. Nevertheless, the results usually were stated in heuristic
terms and proved under rather restrictive assumptions, which were not
satisfied in most cases.

In the statement of a Pontryagin-type maximum principle there is an
adjoint cquation, which is an ordinary differential equation (ODE) in the
(finite-dimensional) deterministic case and a stochastic differential equation
(SDE) in the stochastic casc. The system consisting of the adjoint cqua-
tion, the original state cquation, and the maximum condition is referred
to as an (eztended) Hamiltonian system. On the other hand, in Bellman'’s
dynamic programming, there is a partial differential equation (PDE), of
first order in the (finite-dimensional) deterministic case and of second or-
der in the stochastic case. This is known as a Hamilton Jacobi-Bellman
(HJB) equation. This leads to the following question, which is cssentially
a rephrase of Question (Q):

(Q’) What is the relationship betwecn Hamiltonian systems and HIB
cquations?

Or, even more generally,
(Q"”) What is the relationship between ODEs/SDEs and PDEs?

Once the question is asked this way, one will immediately realize that
similar questions have already been or are being addressed and studied in
other fields. Let us briefly recall them below.

‘Analytic Mechanics. Using Hamilton’s principle and Legendre’s
transformation, one can describe dynamics of a system of particles by a

* Here, by a stochastic optimal control problem we mean a completely
observed control problem with a state equation of the Ito type and with
a cost functional of the Bolza type; see Chapter 2 for details. When the
diffusion coefficient is identically zero, and the controls arc restricted to
deterministic functions, the problem is reduced to a deterministic optimal
control problem.
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family of ODEs called Hamilton’s canonical system or the Hamiltonian sys-
tem. On the other hand, by introducing Hamilton’s principal function, onc
can describe the particle system by a PDE called the Hamilton-Jacobi (HJ)
equation. These two ways are in fact equivalent in the scnse that the solu-
tions of the canonical system can be represented by that of the HJ equation,
and vice versa. One easily secs a strong analogy between optimal control
and analytic mechanics. This is not surprising, however, since the classi-
cal calculus of variations, which is the foundation of analytic mechanics, is
indeed the origin of optimal control theory.

Partial Differential Equations. There is a classical method of char-
acteristics in solving PDEs. More specifically, for a first-order PDE, there
is an associated family of ODEs for curves, called characteristic strips, by
which the solutions to the PDE can be constructed. In the context of
(deterministic) optimal controls, the Hamiltonian system involved in the
maximum principle serves as the characteristics for the HJB equation in-
volved in the dynamic programming.

Stochastic Analysis. The stochastic version of the method of char-
acteristics is the Feynman-Kac formula, which represents the solutions to
a linear sccond-order parabolic or clliptic PDE by those to some SDEs. On
the other hand, a reversed representation has been recently developed via
the so-called four-step scheme, which represents the solutions to a coupled
forward-backward SDE by thosc to a PDE. A deterministic version of this
is closely related to the so-called invariant embedding, which was studiced
by Bellman-Kalaba-Wing.

Economics. The key to understanding the cconomic interpretation of
optimal control theory is the shadow price of a resource under considera-
tion. The very definition of the shadow price originates from onc of the
rclationships between the maximum principle and dynamic programming,
namely, thc shadow price (adjoint variable) is the rate of change of the
performance measure (value function) with respect to the change of the
resource (state variable).

Finance. The celcbrated Black-Scholes formula indeed gives noth-
ing but a way of representing the option price (which is the solution to a
backward SDE) by the solution to the Black-Scholes equation (which is a
parabolic PDE).

Interestingly enough, all the relationships described above can be cap-
tured by the following simple, generic mathematical formula:

y(t) = (¢, z(t)),

where (z(t), y(t)) satisfics some ODE/SDE and 6 satisfiecs some PDE. For
example, in the relationship between the maximum principle and dynamic
programming, (z(t),y(t)) is the solution to the Hamiltonian system and
[—6] is the gradient in the spatial variable of the value function (which is
the solution to the HJB equation). In the Black-Scholes model, y(t) is the
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option price, z(t) is the underlying stock price, and 6 is the solution to the
Black-Scholes PDE.

Before studying Question (Q), one has first to resolve the following two
problems:

(P1) What is a general stochastic maximum principle if the diffusion
depends on the control and the control domain is not necessarily convex?

This problem has been investigated since the 1960s. However, almost
all the results prior to 1980 assume that the diffusion term does not depend
on the coutrol variable and/or the diffusion depends on the control but
the control domain is convex. Under thesc assumptions, the statements of
the maximum principle and their proofs are very much parallel to those of
the deterministic case. One does not see much essential difference between
stochastic and deterministic systems from those results. The stochastic
maximum principle for systems with control-dependent diffusion coefficients
and possibly nonconvex control domains had long been an outstanding open
problem until 1988.

(P2) How is one to deal with the inherent nonsmoothness when study-
ing the relationship between the maximum principle and dynamic program-
ming?

The rclationship unavoidably involves the derivatives of the value func-
tions, which as is well known could be nonsmooth in even very simple cascs.

During 1987-1989, a group led by Xunjing Li at the Institute of Math-
ematics, Fudan University, including Ying Hu, Jin Ma, Shige Peng, and the
two authors of the present book, was studying those problems and related
issues in their weckly seminars. They insisted on tackling the control-
dependent diffusion cases, and this insistence was based on the following
belief: Only when the controls/decisions could or would influence the scale
of uncertainty (as is indeed the case in many practical systems, especially
in the arca of finance) do the stochastic problems differ from the deter-
ministic ones. In the stimulating environment of the seminars, Problems
(P1) and (P2) were solved almost at the same time in late 1988, based on
the introduction of the so-called second-order adjoint equation. Specifically,
Peng, then a postdoctoral fellow at Fudan, solved Problem (P1) by consid-
cring the quadratic terms in the Taylor expansion of the spike variation,
via which he established a new form of maximum principle for stochastic
optimal controls. On the other hand, Zhou (who was thcn a Ph.D. student
at Fudan) found a powerful way for solving Problem (P2). By utilizing vis-
cosity solution theory, he managed to disclose the rclationship between the
first-order (respectively, second-order) adjoint equations and the first-order
(respectively, sccond-order) derivatives of the value functions. After 1989,
members of the Fudan group went to different places in the world, but the
rescarch they carried out at Fudan formed the foundation of their further re-
search. In particular, studies on nonlinear backward and forward-backward



x Preface

SDEs by Pardoux-Peng, and Ma-Yong are natural extensions of those on
the (linear) adjoint equations in the stochastic maximum principle. This
fashionable theory soon became a notable topic among probabilists and con-
trol theorists, and found interesting applications in stochastic analysis, PDE
theory, and mathematical finance. The remarkable work on the nonlinear
Feynman-Kac formula (representing solutions to nonlinear PDEs by those
to backward SDEs) by Peng and the four-step scheme (representing solu-
tions to forward-backward SDEs by those to PDEs) by Ma-Protter-Yong
once again remind us about their analogy in stochastic controls, namely, the
relationship betwecen stochastic Hamiltonian systems and HJB equations.
On the other hand, (stochastic) verification theorems by Zhou and Zhou-
Yong-Li by means of viscosity solutions are extensions of the relationship
between the maximum principle and dynamic programming from open-loop
controls to feedback controls. These verification theorems lcad to optimal
feedback synthesis without involving derivatives of the value functions. Fi-
nally, the recent work by Chen-Li-Zhou, Chen-Yong, and Chen-Zhou on
stochastic lincar quadratic (LQ) controls with indefinite control weighting
matrices in costs demonstrates how fundamentally different it is when the
control enters into the diffusion term. The LQ case also provides an im-
portant examplc where the maximum principle and dynamic programming
are equivalent via the stochastic Riccati equation.

The purpose of this book is to give a systematic and self-contained
presentation of the work done by the Fudan group and related work done
by others, with the core being. the study on Question (Q) or (Q’). In
other words, the theme of the book is to unify the maximum principle and
dynamic programming, and to demonstrate that viscosity solution theory
provides a nice framework to unify them. While the main context is in
stochastic optimal controls, we try whenever possible to disclose some in-
trinsic relationship among ODEs, SDEs, and PDEs that may go beyond
control theory. When writing the book, we paid cvery attention to the co-
herence and consistency of the materials presented, so that all the chapters
arc closely rclated to cach other to support the central theme. In some
sense, the idea of the whole book may be boiled down to the single for-
mula y(t) = 0(t,z(t)), which was mentioned earlier. That said, we do not
mecan to trivialize things; rather we want to cmphasize the common ground
of seemingly different thcories in different areas. In this perspective, the
Black-Scholes formula, for instance, would not surprise a person who is
familiar with mechanics or the Feynman -Kac formula.

Let us now sketch the main contents of cach chapter of the book.

Chapter 1. Since the book is intended to be sclf-contained, some pre-
liminary materials on stochastic calculus are presented. Spccifically, this
chapter collects notions and results in stochastic calculus scattered around
in the literature that are related to stochastic controls. It also unifies termi-
nology and notation (which may differ in different papers/books) that are
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to be used in later chapters. These materials are mainly for beginners (say,
graduate students). They also serve as a quick reference for knowledgeable
rcaders.

Chapter 2. The stochastic optimal control problem is formulated and
some examples of real applications are given. However, the chapter starts
with the deterministic case. This practice of beginning with deterministic
problems is carried out in Chapters 3-6 as well. The reasons for doing
so are not only that the deterministic case itself may contain important
and interesting results, but also that readers can see the essential differ-
ence between the deterministic and stochastic systems. In the formulation
of stochastic control problems we introduce strong and weak formulations
and emphasize the difference between the two, which is not usually spelled
out explicitly in the literature. Stochastic control models other than the
“standard” one studied in this book are also briefly discussed. This chap-
ter finally provides a very extensive literature review ranging from the very
origin of optimal control problems to all the models and applied examples
presented in this chapter.

Chapter 3. A stochastic Hamiltonian system is introduced that con-
sists of two backward SDEs (adjoint equations) and one forward SDE (the
original state cquation) along with a maximum condition. The general
stochastic maximum principle is then stated and proved. Cases with termi-
nal state constraints and sufficiency of the maximum principle are discussed.

Chapter 4. First, a stochastic version of Bellman'’s principle of op-
timality is proved by virtue of the weak formulation, bascd on which HJIB
equations are derived. The viscosity solution is introduced as the tool to
handle the inhcrent nonsmoothness of the value functions. Some properties
of the value functions and viscosity solutions of the HJB equations arc then
studied. It is emphasized that the time variable here plays a special role due
to the nonanticipativencss of the underlying system. Finally, a simplified
proof (compared with the existing ones) of the uniqueness of the viscosity
solutions is presented. Notice that the verification technique involved in
the dynamic programming is deferred to Chapter 5.

Chapter 5. Classical Hamilton-Jacobi theory in mechanics is reviewed
first to demonstratc the origin of the study of the relationship betwcen
the maximum principle and dynamic programming. The relationship for
deterministic systems is investigated and is compared with the method of
characteristics in PDE theory, the Feynman-Kac formula in probability
theory, and the shadow price in economics. The relationship for stochastic
systems is then studied. It starts with thc case where the value function
is smooth to give some insights, followed by a detailed analysis for the
nonsmooth case. Finally, stochastic verification theorems workable for the
nonsmooth situation are given, and the construction of optimal feedback
controls is discussed.

Chapter 6. This chapter investigates a special casc of optimal control
problems, namely, the linear quadratic optimal control problems (LQ prob-
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lems). They constitute an extremely important class of optimal control
problems, and the solutions of LQ problems exhibit clegant propertics duc
to their simple and nice structures. They also nicely exemplify the gencral
theory developed in Chapters 3-5. In the chapter an LQ problem is first
treated as an optimization problem in an infinite-dimensional space, and
abstract results are obtained to give insights. Then lincar optimal state
feedback is established via the so-called stochastic Riccati equation. It is
pointed out that both the maximum principle and dynamic programming
can lead to the stochastic Riccati equation, by which one can sce more
clearly the rclationship between the maximum principle and dynamic pro-
gramming (actually, these two approaches are equivalent in the LQ case).
We emphasize that the control weighting matrices in the cost are allowed
to be indefinite in our formulation. Therefore, it is essentially different
from the deterministic case. Stochastic Riccati equations are extensively
studied for various cases. Finally, as an example, a mcan-variance portfolio
selection is solved by the LQ method devcloped.

Chapter 7. This chapter presents the latest development on backward
and forward-backward SDEs, with an emphasis on the rclationship betwcen
nonlincar SDEs and nonlinear PDEs. Although the topics in this chapter
go beyond the scope of stochastic controls, they originate from stochastic
controls as mentioned carlier. The chapter begins with the original argu-
ment of Bismut for studying lincar backward SDEs by using the martingalc
representation theorem. Then the existence and uniqueness of solutions to
nonlincar backward SDEs arc investigated for two typces of time durations,
finite deterministic horizon and random horizon, by virtuc of two different
methods. Feynman Kac-type formulac with respect to both forward and
backward SDEs arc presented. Next, a kind of inverse of the Feynman-Kac-
type formulac, the so-called four-step scheme, which represents solutions to
forward-backward SDEs by thosc to PDEs, is discussed. Solvability and
nonsolvability of forward backward SDEs are also analyzed. Finally, the
Black-Scholes formula in option pricing is derived by the four-step scheme.

The idca of writing such a book was around in late 1994 when JY was
visiting XYZ in Hong Kong. Whilc discussing the stochastic verification
theorems, they rcalized that the series of works donc by the Fudan group
werc rich cnough for a book, and therc should be a book as a system-
atic account of these results. The plan became firm with encouragement
from Wendell Fleming (Brown), Ioannis Karatzas (Columbia), and Xun-
jing Li (Fudan). The authors arc greatly indebted to Robert Elliott (Al-
berta), Wendell Fleming (Brown), Ulrich Haussmann (British Columbia),
loannis Karatzas (Columbia), Thomas Kurtz (Wisconsin-Madison), Mete
Soner (Princeton), and Michael Taksar (SUNY-Stony Brook), who sub-
stantially reviewed some or all chapters, which led to a much improved
version. Michacl Kohlmann (Konstanz) and Andrew Lim (CUHK) read
carefully large portions of the manuscript and offered numerous helpful
suggestions. During various stages in the prolonged, four-year course of
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the project, many experts and friends have shown their concern and en-
couragement, conveyed their comments, or sent their research works for
the book. Among them the following deserve special mention: Alain
Bensoussan (CNES), Leonard Berkovitz (Purdue), Giuseppe Da Prato
(Scuola Normale Superiorc), Darrell Duffie (Stanford), Tyrone Duncan
(Kansas), Fausto Gozzi (Scuola Normal Superiore), Suzanne Lenhart (Ten-
nessee), Zhuangyi Liu (Minnesota-Duluth), John Moore (ANU), Makiko Ni-
sio (Kobe), Bozenna Pasik-Duncan (Kansas), Thomas Seidman (Maryland-
Baltimore County), Hiroshi Tanaka (Keio), Wing Wong (CUHK), Jia-an
Yan (Academia Sinica), George Yin (Wayne State), and Qing Zhang (Gceor-
gia). Espccially, both authors would like to express appreciation to their
long-time tcachers and/or collcagucs in the Fudan group: Shuping Chen
(Zhejiang), Ying Hu (Rennes), Xunjing Li (Fudan), Jin Ma (Purduc), Shige
Peng (Shandong), and Shanjian Tang (Fudan), whose elcgant research work
provided a rich source for this book.

JY would like to acknowledge the partial support from the Natural Sci-
ence Foundation of China, the Chinese Education Ministry Scicnce Foun-
dation, the National Outstanding Youth Foundation of China, and the Li
Foundation at San Francisco, USA. In particular, with the financial support
of a Rescarch Fellowship of the Chinese University of Hong Kong (CUHK),
JY visited XYZ at CUHK in the Spring of 1998 for half a year, which made
it possible for the two authors to fully concentrate on finalizing the book.

In the carcer of XYZ, he has been influenced cnormously by thrce
scholars: Xunjing Li (Fudan), Makiko Nisio (Kobc), and Hiroshi Tanaka
(Kcio), whom he has the privilege of having worked with for a substantial
period of time, and he would like to take this opportunity to pay them his
highest respect. Also, he would like to acknowledge the support from the
Research Grant Council and Additional Funding for Industry Support of
the Hong Kong Government, and the Mainline Rescarch Scheme of CUHK.

It has been a truly enjoyable expericnce to work with the staff at
Springer-Verlag, espccially the executive editor of statistics John Kimmel
and the copyeditor David Kramer, whose hclpful and professional services
for the book are gratefully acknowledged.

Last, but not least, both authors would like to thank their familics for
their long-lasting support and love.

JY, Shanghai
XYZ, Hong Kong

November 1998



Notation

The following notation is frequently used in the book.

R" — n-dimensional real Euclidean space.

R™*™ — the set of all (n x m) real matrices.

S™ — the set of all (n x n) symmetric matrices.

S7 - the set of all (n x n) nonnegative definite matrices.

..SA‘Z — the set of all (n x n) positive definitc matrices.
tr (A) — the trace of the square matrix A.

z7 ~ the transpose of the vector (or matrix) z.
(-,-) — inner product in some Hilbert space.

Q — the set of all rational numbers.

IN — the set of natural numbers.

|N| — Lebesgue measure of the set N.

2 Defined to be (sce below).
1, zTEA,
I the indicator function of the set A: I4(z) a { €
0, z¢A.

et émax{go,O}, @~ é—min{cp,O}.

a V b2 max{a,b}, a/\bémin{a,b}.

29 — the set of all subsets of €.

¢  thc cmpty sct.

C([0,T);R") — the sct of all continuous functions ¢ : (0,7] — R".

C([0,00); R™) — the set of all continuous functions ¢ : [0,00) — R".

Cy(U) — the set of all uniformly bounded, continuous functions on U.

LP(0,T;R"™) — the set of Lebesgue measurable functions ¢ : [0,T] — R"
such that [ [(t)|Pdt < co (p € [1,00)).

L>(0,T;R") — the set of essentially bounded measurable functions
¢:[0,T] = R".

(9, F,P) — probability space.

{F:}e>0 — filtration.

(Q, F,{Ft}t>0,P) — filtered probability space.

B(U) — the Borel o-field generated by all the open sets in U.

o(£) 2 €-'(F) — the o-field generated by the random variable €.

o(A)— the smallest o-field containing the class A,
Vafaéa(Ua fﬂ)' Ao}-"gna;"'
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P¢ = Pof~! — the probability measure induced by the random
variable £.

EX — the expectation of the random variable X.

Cov(X,Y)2E[(X - EX)(Y —EY)T],  Var X 2 Cov(X, X).

E(X|G) — conditional expectation of X given G.

LZ (%, R™) — the set of R"-valued G-measurable random variables
X such that E|X|? < oo (p € [1,00)).

LZE(;R™) — the set of bounded R"-valued G-measurable
random variables.

L%(0,T;R") — the set of all {F},>o-adapted R"-valucd processes
X (-) such that E [ | X(t)|Pdt < oo.

LE(0,T;R") — the set of {F},>0-adapted R"-valued cssentially
bounded processes.

L% (Q;C([0,T); R")) — the set of {F;},>0-adapted R"-valued
continuous processes X () such that
Esup,c(o,1) | X (¢)[P < 0o (p € [1,00)).

M?2[0,T] — the set of square-integrablc martingales.

M?[0,T] - the set of square-integrable continuous martingales.

M?=Zee[0 T] - the set of square-integrable local martingales.

M?=2tc[0, T) -~ the set of square-intcgrable continuous local
martingales.

w0, T|2C(0,TER"), W"2C([0,00); R™).
C; — the set of Borel cylinders in W™[0, s].

C — the set of Borel cylinders in W™.

W20, TI£{¢(- A1) | () e WP[0,T]}, te[0,T].
B.(W"[0,T)) £ B(WP[0,T]), te0,T).
B..(W"[0,T))2N,., B.(W"[0,T)), te[0,T).
WIE{C(-A) | () eWn}, t>0.

B, (W™)2B(W7), t>0.

By (W")2N,., B,(W"), t>0.

AZ(U) — the set of all {B,+(W"[0,T))}.>o0-progressively mecasurable
processes 7 : (0, 7] x W™[0,T] — U.

A™"(U) - the set of all {B,+(W™"};>0-progressively measurable
processes 7 : [0,00) x W™ — U.

V[0,T] - the set of all measurable functions u : [0,T] — U.

U[0,T) — the set of all {F;}:>0-adapted processes u: [0,T] x 2 - U.

Vad(0,T] — the set of deterministic admissible controls.

U:,(0,T] — the set of (stochastic) strong admissible controls.

UX[0,T) — the set of (stochastic) weak admissible controls.
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