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Preface

Exploring and developing ultralight engineering materials has been an
important academic subject for decades. In 1990s, the emphasis has been
put on developing ultralight multifunctional materials, which combine me-
chanical, thermal, electrical, acoustical, and possibly other functionalities.
Cellular solids are a group of ultralight materials with multifunctional at-
tributes. Multifunctionality of cellular solids is an interdisciplinary research
area that requires a concurrent-engineering approach. The aim is to es-
tablish structure-property relationships for tailoring material structures to
achieve properties and performance levels that are customized for defined
multifunctional applications.

The subject of this book is the thermo-fluid behaviour of periodic cel-
lular metals, which didn’t attract wide academic interests until late 1990s.
The book, for the first time, systematically adopts experimental, numerical,
and analytical approaches, presents the fluid flow and heat transfer in peri-
odic cellular metals under forced convection conditions. Thermal attributes
in these materials include the high thermal conductivity of the metals com-
prising the borders, in combination with the high internal surface area and
the propitious fluid transport dynamics. These enable high heat transfer
rates that can be used effectively for either cooling or heat exchange.

This book is in the context of exploring multifunctional applications of
cellular solids, which means that periodic cellular metals are regarded as a
member of cellular solids. The book introduces the forced convective heat
transfer capability of periodic cellular metals with the final aim of develop-
ing multifunctional materials. Therefore, this book should be beneficial to
both academic and industrial readers.

Tian Jian Lu
Feng Xu
Ting Wen
February 2013
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Chapter 1

Introduction

1.1 Introduction and Synopsis

In late 1990s, driven by the needs of minimizing manufacturing and
operational costs in satellites, a revolutionary concept — Multifunctional
structures (MFS) — was developed, which combines electronic components
(multi-chip modules, or MCMs) and signal and power distribution cabling
within a load bearing structure with embedded thermal control. This design
concept dramatically changed the design approach for space systems, and in
addition, led to a paradigm shift in the design methodology of the structures
and control community!'~4.

Significant efforts in incorporating the MF'S concept into materials en-
gineering have led to an entirely new category of materials: multifunctional
materials. Cellular solids are a group of materials with multifunctional
attributes, which have tailorable structures to achieve system-level perfor-
mance as materials that combine mechanical, thermal, electrical, acoustical,
and possibly other functionalities. Recently, there has been an increased
interest in the use of cellular solids as multifunctional materials for two
reasons®: (i) novel manufacturing approaches have beneficially affected
performance and cost; (ii) higher levels of basic understanding about me-
chanical, thermal, and acoustic properties have been developed in conjunc-
tion with associated design strategies.

Multifunctionality of cellular solids is an interdisciplinary research area
that requires a concurrent-engineering approach. The aim is to establish
structure-property relationships for tailoring material structures to achieve
properties and performance levels that are customized for defined multifunc-
tional applications(®). One significant application area is ultralight multi-
functional heat exchangers or heat sinks in large-scale integrated electronic
packaging, where cellular solids appear to be more attractive than the con-
ventional heat dissipation media as the heat dissipation material is also
required to support large structural loads. The multifunctional design in-
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herently facilitates the increase of integration scale, which results in increas-
ing power densities in electronic packaging. Therefore, highly effective and
robust thermal management via these cellular solids is crucial. With the
requirements on capability of carrying both mechanical and thermal loads
in mind, the challenges are to establish relationships between topology and
properties, and to optimize the geometric parameters applicable to various

thermo-mechanical applications!7~%].

1.2 Cellular Solids

Cellular solids are defined as those made up of an interconnected network
of solid struts or plates that form the edges and faces of cells. They are found
in many natural (wood, cork, sponge, bone, etc.) and man-made structures.

Cellular solids

—(Stochastic structures]
——{ Open-cell foams ]

-—-{ Closed-cell foams ]

——{ Periodic structures]

—ﬁ;&ttice truss structurw]

—( Prismatic structures ]

Figure 1.1 Two classes of cellular solids

Basically, there are two broad classes of cellular solids, as shown in
Figure 1.1: one with a stochastic structure and the other with a periodic
structure’0~13] Cellular solids with stochastic structures are mainly foams,
which can be further classified into two types based on their pore structure:
open-cell foams and closed-cell foams, as shown in Figure 1.2(a) and (b),
respectively. The former contain pores that are connected to each other
and form an interconnected network; while the latter do not have intercon-
nected pores. Cellular solids with periodic structures are found in a variety
of structures, among which the most frequently mentioned are those with
lattice truss structures, as shown in Figure 1.2(c), (d) and (e), and prismatic
structures, as shown in Figure 1.2(f), (g) and (h).

One may argue the difference between the periodic engineering structures
and the cellular materials with periodic structures. Ashby('4l pointed out
that they differ in one important regard: that of scale. Scale of the unit
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(c) (d)

(2) (h)

(k)

Figure 1.2 Examples of different cellular solids: foams as (a) open-cell foams;
(b) closed-cell foams; and periodic cellular solids (sandwich panels with core
structures) as (c) tetrahedral lattice; (d) pyramidal lattice; (e) Kagome lattice;
(f) diamond textile; (g) diamond collinear lattice; (h) square collinear lattice;

(i) triangular corrugation; (j) and (k) 2D cellular material(*>~17)
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cell of cellular solids is one of millimeters or micrometers, and it is this that
allows them to be viewed both as structures and as materials. At one level,
they can be analyzed using classical methods of mechanics, just as any space
frame is analyzed. But at another we must think of the cellular structures
not only as a set of connected struts, but as a ‘material’ in its own right,
with its own set of effective properties, allowing direct comparisons with
those of fully dense, monolithic materials.

Various properties of a cellular solid depend on two separate sets of pa-
rameters: those describing the geometric structure of the cellular solid, and
those describing the properties of the material of which the cellular solid
is made. In other words, for cellular solids with different structures or dif-
ferent materials, the underlying mechanisms governing structure-property
relationships can be very different.

1.3 Periodic Cellular Solids

While commercial metal foams with open cells, which are typical stochas-
tic cellular structures, are good compact heat exchangers and relatively
cheap when made by sintering, their load-bearing capability is much infe-
rior to periodic structures having the same weight. This arises because their
deformation under mechanical loading is dominated by cell wall bending as
opposed to cell wall stretching in most periodic structures!*®l. Nonetheless,
as cross-flow heat exchangers they can provide a high thermal conductivity
path for heat transport, a very high surface area for dissipation into a cool-
ing fluid located in the pores and a contiguous path for forcing the coolant
through the structure.

The rapid advance in manufacturing techniques such as lithography
and rapid prototyping has made possible to construct new types of cel-
lular materials with periodic microstructures. These cellular structures
have thermal and structural advantages over other conventional heat dissi-

13,19~23]  The precise

pation media and other performance characteristicsl
control of topologies during the manufacturing stage differentiates the new
cellular materials from conventional heat dissipation media. A wide vari-
ety of process-routes have been developed to manufacture cellular metals
with relative densities of 1%~20% and cell sizes from 100um to several

centimetres(12].

1.3.1 2D periodic cellular solids

Two-dimensional (2D) cellular solids, with the simplest structures amon-
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gst different cellular solids, are generally selected as the fundamental geom-
etry for modelling more complicated cellular solids such as foams/?4. More
importantly, certain structural and thermal properties of 2D cellular solids
are superior to those of foams with equivalent densities!!8].

2D cellular solids are composed of a two-dimensional array of polygons
which pack to fill a plane area such as the hexagonal cells of a beehive
honeycomb!2®, An example of a 2D cellular solid is shown in Figure 1.2(a).
It is obvious that, topologically, 2D cellular solids are anisotropic. Two
directions can be defined in 2D cellular solids: one is normal or lateral to
the cell principal axes, y-z plane shown in Figure 1.2(b), which is lateral
direction; the other is parallel to the cell principal axes, z direction shown
in Figure 1.2(c), which is azial direction.

2D cellular solids, sometimes, are used as sandwich cores to form a
sandwich panel. In these cases, correspondingly, the sandwich panel with
face-sheets normal to the cell principal axes, as shown in Figure 1.2(g), is
called a sandwich panel with azial cores since the loads (mechanical, ther-
mal, etc.) are generally normal to the face-sheets and equivalently parallel
to the cell principal axes; and the sandwich panel with face-sheets parallel
to the cell principal axes, as shown in Figure 1.2(h), is named as a sandwich
panel with lateral cores for similar reasons.

1.3.2 3D periodic cellular solids

For three-dimensional (3D) cellular solids, the most often used is lattice,
such as tetrahedral lattice, pyramidal lattice, Kagome lattice and woven
textile, as shown in Figure 1.2(c)~(e).

The potential use of a metal weave configuration as one of the periodic
materials, coupled with a novel bonding scheme to fabricate periodic cel-
lular structures was reported by Tianl'!l. Diverse designs of this textile
configuration have been attempted and some of results were reported by
Li & Wirtz[26l and Xu & Wirtz[2”). The tetrahedral lattice, as shown in
Figure 1.2(c), has three trusses each meeting at a face sheet node, while the
pyramidal structure has four trusses meeting at a face sheet node, as shown
in Figure 1.2(d). Both topologies have directions which are not obscured
for fluid flow: three of these channels in a single layer of the tetrahedral
structure and two in the pyramidal system!'”). Another example for the
three-dimensional periodic materials was reported by Hoffmann!?® | referred
to as a Kagome topology. The basic topology is somewhat similar to that of
the bank of cylinder arrays, showing structural and aerodynamic anisotropy,
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as shown in Figure 1.2(e).

Other lattice truss topologies have also been proposed based upon manu-
facturing considerations('”). Figure 1.2(f)~(h) shows examples that are easy
to make from wires. The diamond textile structure is made from layers of
a plain weave metal fabric that have been bonded to each other.

1.4 Multifunctional Applications

Well established data on the mechanical properties of cellular systems
with either periodic or stochastic microstructures demonstrate that the rel-
atively high stiffness and yield strength achievable at low density creates

(5,:20~33]  Periodic cellular met-

an opportunity for lightweight structures
als have been exploited for multifunctional applications!!”). For example,
some, such as hexagonal honeycomb, are widely used to enable the design of
light weight sandwich panel structures®¥, for creating unidirectional fluid
flows3%]| for absorbing the energy of impacts/®®, to impede thermal trans-
port across the faces of sandwich panels and for acoustic damping, for blast
wave mitigation[37~39],

In addition, the open topologies with high surface area density have
thermal attributes that may enable applications which require a structure
for heat dissipation as well as mechanical stiffness/strength. The structures
have a high surface area density and may be constructed out of high con-
ductivity materials. These combinations make the cellular materials capable
heat dissipation media that can be used effectively for coupled thermal and
structural applications, for example as a jet blast deflector on an aircraft
carrier. In such an application, high mechanical compression is exerted on
the deflector plate when an aircraft rolls over the retracted deflector and
then subsequently a high thermal load from the jet is applied at take-off.
The jet blast deflector is inclined at approximately 50° with respect to the
deck surface during take-off. In this situation, the hot jet of surface tem-
perature with radial variations impinges the flat plate that has convection
cooling mechanism underneath to cool the plate down to a certain level
of temperature in a short period of time. To enhance this convection heat
transfer, a variety of structured lattice-materials can be used. However, con-
ventional fin type heat exchangers are not suitable due to the mechanical
loadings.

Whilst commercial metal foams with stochastic cellular morphologies
are in general good compact heat exchangers and relatively cheap (if pro-
cessed via the sintering route), they are not structurally efficient, as their
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deformation under mechanical loading is dominated by cell wall bending
as opposed to cell wall stretching. Topologically configured ultralight met-
als with periodic microstructures have subsequently been developed, which
have superior thermo-structural characteristics. Their weight efficiency is
as good as the best competing concepts (with porosity of 0.9, it is higher
than most of the existing heat exchanger media), with additional multi-
functionality advantages.

1.5 Aims and Outline of the Book

In the current work, we are specifically interested in periodic metallic
cellular materials, because the metallic cellular materials, due to the high
thermal conductivity of metallic solid comprising the borders and the high
internal surface area with propitious fluid transport, are promising candi-
dates for ultralight multifunctional heat exchangers or heat sinks.

The outline of this book is as follows.

Chapter 2 gives detailed information on experimental characterization of
the thermo-fluid behaviour of periodic cellular metals, including the setup of
the experimental system, the experimental procedure, and the data analysis
method.

Chapter 3 covers a comprehensive description of both the pressure drop
and heat transfer characteristics of metallic 2D cellular materials based on
analytical, experimental, and numerical results.

Chapters 4 and 5 covers the thermo-fluid behaviour of two types of 3D
metallic cellular materials: pyramidal lattice and woven textile.

Chapter 6 proposes an approach for evaluating the overall thermal per-
formance of various heat sink media, with which, the comparisons between
periodic cellular metals and other cellular metals are provided.

Chapter 7 proposes an analytical approach for the optimal design of
periodic metals subjected to single-phase forced convection. The model is
validated by comparison with numerical results. Optimal results are re-
ported for different flow configurations.

Chapter 8 suggests the directions of the future work.
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