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One must learn by doing the thing;
for though you think you know it
You have no certainty, until you try.
—Sophocles, Trachiniae

PREFACE

The principal goal of this book is to provide a unified introduction to the theory, implementation, and applications
of statistical and adaptive signal processing methods. We have focused on the key topics of spectral estimation,
signal modeling, adaptive filtering, whose selection was based on the grounds of theoretical value and practical
importance. The book has been primarily written with students and instructors in mind. The principal objectives
are to provide an introduction to basic concepts and methodologies that can provide the foundation for further
study, research, and application to new problems. To achieve these goals, we have focused on topics that we
consider fundamental and have either multiple or important applications.

Approach and prerequisites

The adopted approach is intended to help both students and practicing engineers understand the fundamental
mathematical principles underlying the operation of a method, appreciate its inherent limitations, and provide
sufficient details for its practical implementation. The academic flavor of this book has been influenced by our
teaching whereas its practical character has been shaped by our research and development activities in both
academia and industry. The mathematical treatment throughout this book has been kept at a level that is within the
grasp of upper-level undergraduate students, graduate students, and practicing electrical engineers with a
background in digital signal processing, probability theory, and linear algebra.

Organization of the book

Chapter 1 introduces the basic concepts and applications of statistical and adaptive signal processing and provides
an overview of the book. Chapters 2 introduce some basic concepts of estimation theory. Chapter 3 provides a
treatment of parametric linear signal models (both deterministic and stochastic) in the time and frequency domains.
Chapter 4 presents the most practical methods for the estimation of correlation and spectral densities. Chapter 5
provides a detailed study of the theoretical properties of optimum filters, assuming that the relevant signals can be
modeled as stochastic processes with known statistical properties; and Chapter 6 contains algorithms and
structures for optimum filtering, signal modeling, and prediction. Chapter 7 introduces the principle of
least-squares estimation and its application to the design of practical filters and predictors. Chapters 8 and 9 use
the theoretical work in Chapters 3, 5 and 6 and the practical methods in Chapter 7 to develop, evaluate, and apply
practical techniques for signal modeling, adaptive filtering,

Theory and practice

It is our belief that sound theoretical understanding goes hand-in-hand with practical implementation and
application to real-world problems. Therefore, the book includes a large number of computer experiments that
illustrate important concepts and help the reader to easily implement the various methods. Every chapter includes
examples, problems, and computer experiments that facilitate the comprehension of the material. To help the
reader understand the theoretical basis and limitations of the various methods and apply them to real-world
problems, we provide MATLAB functions for all major algorithms and examples illustrating their use.



Feedback

Although we are fully aware that there always exists room for improvement, we believe that this book is a big step
forward for an introductory textbook in statistical and adaptive signal processing. However, as engineers, we
know that every search for the optimum requires the will to change and quest for additional improvement. Thus,
we would appreciate feedback from teachers, students, and engineers using this book for self-study at
vingle@lynx.neu.edu.
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CHAPTER 1

Introduction

This book is an introduction to the theory and algorithms used for the analysis and processing of random signals and
their applications to real-world problems. The fundamental characteristic of random signals is captured in the
following statement: Although random signals are evolving in time in an unpredictable manner, their average
statistical properties exhibit considerable regularity. This provides the ground for the description of random signals
using statistical averages instead of explicit equations. When we deal with random signals, the main objectives are the
statistical description, modeling, and exploitation of the dependence between the values of one or more discrete-time
signals and their application to theoretical and practical problems.

Random signals are described mathematically by using the theory of probability, random variables, and
stochastic processes. However, in practice we deal with random signals by using statistical techniques. Within this
framework we can develop, at least in principle, theoretically optimum signal processing methods that can inspire the
development and can serve to evaluate the performance of practical statistical signal processing techniques. The area
of adaptive signal processing involves the use of optimum and statistical signal processing techniques to design
signal processing systems that can modify their characteristics, during normal operation (usually in real time), to
achieve a clearly predefined application-dependent objective.

The purpose of this chapter is twofold: to illustrate the nature of random signals with some typical examples and
to introduce the three major application areas treated in this book: spectral estimation, signal modeling and adaptive
filtering. Throughout the book, the emphasis is on the application of techniques to actual problems in which the
theoretical framework provides a foundation to motivate the selection of a specific method.

1.1 Random Signals

A discrete-time signal or time series is a set of observations taken sequentially in time, space, or some other
independent variable. Examples occur in various areas, including engineering, natural sciences, economics, social
sciences, and medicine.

A discrete-time signal x(n) is basically a sequence of real or complex numbers called samples. Although the
integer index n may represent any physical variable (e.g., time, distance), we shall generally refer to it as time.
Furthermore, in this book we consider only time series with observations occurring at equally spaced intervals of time.

Discrete-time signals can arise in several ways. Very often, a discrete-time signal is obtained by periodically
sampling a continuous-time signal, that is, x(n)= x.(nT), where T =1/F, (seconds) is the sampling period and
F, (samples per second or hertz) is the sampling frequency. At other times, the samples of a discrete-time signal are
obtained by accumulating some quantity (which does not have an instantaneous value) over equal intervals of time,
for example, the number of cars per day traveling on a certain road. Finally, some signals are inherently discrete-time,
for example, daily stock market prices. Throughout the book, except if otherwise stated, the terms signal, time series,
or sequence will be used to refer to a discrete-time signal.

The key characteristics of a time series are that the observations are ordered in time and that adjacent
observations are dependent (related). To see graphically the relation between the samples of a signal that are [
sampling intervals away, we plot the points {x(n),x(n+1)} for 0<n<N-1-I, where N is the length of the
data record. The resulting graph is known as the / lag scatter plot. This is illustrated in Figure 1.1, which shows a
speech signal and two scatter plots that demonstrate the correlation between successive samples. We note that for
adjacent samples the data points fall close to a straight line with a positive slope. This implies high correlation
because every sample is followed by a sample with about the same amplitude. In contrast, samples that are 20
sampling intervals apart are much less correlated because the points in the scatter plot are randomly spread.

When successive observations of the series are dependent, we may use past observations to predict future values.
If the prediction is exact, the series is said to be deterministic. However, in most practical situations we cannot predict
a time series exactly. Such time series are called random or stochastic, and the degree of their predictability is



2 Statistical and Adaptive Signal Processing

determined by the dependence between consecutive observations. The ultimate case of randomness occurs when
every sample of a random signal is independent of all other samples. Such a signal, which is completely unpredictable,
is known as white noise and is used as a building block to simulate random signals with different types of dependence.
To summarize, the fundamental characteristic of a random signal is the inability to precisely specify its values. In
other words, a random signal is not predictable, it never repeats itself, and we cannot find a mathematical formula that
provides its values as a function of time. As a result, random signals can only be mathematically described by using
the theory of stochastic processes.
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FIGURE 1.1
(a) The waveform for the speech signal “signal”; (b) two scatter plots for successive samples and samples separated by 20 sampling
intervals.
This book provides an introduction to the fundamental theory and a broad selection of algorithms widely used
for the processing of discrete-time random signals. Signal processing techniques, dependent on their main objective,
can be classified as follows (see Figure 1.2):

Random signals

Theory of stochastic
processes,
Analysis < estimation, and Filtering
optimum filtering
(Chapters 2, 5, 6)

! l
| ! ! |

dpactral Signal modeling Adaptivefiltering
estimation Array processin
(Chapters 4, 8) (Chapters 3) (Chapters 7, 9) ViR 9

FIGURE 1.2
Classification of methods for the analysis and processing of random signals.

e Signal analysis. The primary goal is to extract useful information that can be used to understand the signal
generation process or extract features that can be used for signal classification purposes. Most of the methods in this
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area are treated under the disciplines of spectral estimation and signal modeling. Typical applications include
detection and classification of radar and sonar targets, speech and speaker recognition, detection and classification of
natural and artificial seismic events, event detection and classification in biological and financial signals, efficient
signal representation for data compression, etc.

» Signal filtering. The main objective of signal filtering is to improve the quality of a signal according to an
acceptable criterion of performance. Signal filtering can be subdivided into the areas of frequency selective
filtering and adaptive filtering. Typical applications include noise and interference cancelation, echo cancelation,
channel equalization, seismic deconvolution, active noise control, etc.

We conclude this section with some examples of signals occurring in practical applications. Although the description of
these signals is far from complete, we provide sufficient information to illustrate their random nature and significance in
signal processing applications.

Speech signals. Figure 1.3 shows the spectrogram and speech waveform corresponding to the utterance “signal.”
The spectrogram is a visual representation of the distribution of the signal energy as a function of time and frequency.
We note that the speech signal has significant changes in both amplitude level and spectral content across time. The
waveform contains segments of voiced (quasi-periodic) sounds, such as “e,” and unvoiced or fricative (noiselike)

[Pl

sounds, such as “g.
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FIGURE 1.3
Spectrogram and acoustic waveform for the utterance “signal.” The horizontal dark bands show the resonances of the vocal tract, which
change as a function of time depending on the sound or phoneme being produced.

Speech production involves three processes: generation of the sound excitation, articulation by the vocal tract,
and radiation from the lips and/or nostrils. If the excitation is a quasi-periodic train of air pressure pulses, produced by
the vibration of the vocal cords, the result is a voiced sound. Unvoiced sounds are produced by first creating a
constriction in the vocal tract, usually toward the mouth end. Then we generate turbulence by forcing air through the
constriction at a sufficiently high velocity. The resulting excitation is a broadband noiselike waveform.

The spectrum of the excitation is shaped by the vocal tract tube, which has a frequency response that resembles
the resonances of organ pipes or wind instruments. The resonant frequencies of the vocal tract tube are known as
Sformant frequencies, or simply formants. Changing the shape of the vocal tract changes its frequency response and
results in the generation of different sounds. Since the shape of the vocal tract changes slowly during continuous
speech, we usually assume that it remains almost constant over intervals on the order of 10 ms. More details about
speech signal generation and processing can be found in Rabiner and Schafer 1978; O’Shaughnessy 1987; and
Rabiner and Juang 1993.

Other examples of the stochastic signals are Electrophysiological signals, geophysical signals, radar signals.
1.2 Spectral Estimation

The central objective of signal analysis is the development of quantitative techniques to study the properties of a
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signal and the differences and similarities between two or more signals from the same or different sources. The major
areas of random signal analysis are (1) statistical analysis of signal amplitude (i.e., the sample values); (2) analysis
and modeling of the correlation among the samples of an individual signal; and (3) joint signal analysis (i.e.,
simultaneous analysis of two signals in order to investigate their interaction or interrelationships). These techniques
are summarized in Figure 1.4. The prominent tool in signal analysis is spectral estimation, which is a generic term for
a multitude of techniques used to estimate the distribution of energy or power of a signal from a set of observations.
Spectral estimation is a very complicated process that requires a deep understanding of the underlying theory and a
great deal of practical experience. Spectral analysis finds many applications in areas such as medical diagnosis,
speech analysis, seismology and geophysics, radar and sonar, nondestructive fault detection, testing of physical
theories, and evaluating the predictability of time series.

Random Signal
Aanlysis

Single-signal Single-signal o

amplitude dependence Joint 5|gpal

analysis analysis analysis

! ] T
Averages Autocorrelation Cross-correlation
Probability density Power spectrum Cross power spectrum

Extreme-value Parametric models Coherence

analysis Self-similarity Frequency response

Higher-order statistics Higher-order statistics

FIGURE 1.4
Summary of random signal analysis techniques.

Amplitude distribution. The range of values taken by the samples of a signal and how often the signal assumes
these values together determine the signal variability. The signal variability can be seen by plotting the time series
and is quantified by the histogram of the signal samples, which shows the percentage of the signal amplitude values
within a certain range. The numerical description of signal variability, which depends only on the value of the signal
samples and not on their ordering, involves quantities such as mean value, median, variance, and dynamic range.

Figure 1.5 shows the one-step increments, that is, the first difference x,(n)=x(n)—x(n—1) whereas Figure
1.6 shows their histograms. Careful examination of the shape of the histogram curves indicates that the second signal
jumps quite frequently between consecutive samples with large steps. In other words, the probability of large
increments is significant, as exemplified by the fat tails of the histogram in Figure 1.6(b). The knowledge of the
probability of extreme values is essential in the design of detection systems for digital communications, military
surveillance using infrared and radar sensors, and intensive care monitoring. In general, the shape of the histogram, or
more precisely the probability density, is very important in applications such as signal coding and event detection.
Although many practical signals follow a Gaussian distribution, many other signals of practical interest have
distributions that are non-Gaussian. For example, speech signals have a probability density that can be reasonably
approximated by a gamma distribution (Rabiner and Schafer 1978).

The significance of the Gaussian distribution in signal processing stems from the following facts. First, many
physical signals can be described by Gaussian processes. Second, the central limit theorem states that any process that
is the result of the combination of many elementary processes will tend, under quite general conditions, to be
Gaussian. Finally, linear systems preserve the Gaussianity of their input signals. To understand the last two
statements, consider N independent random quantities x;, x,,...,xy With the same probability density p(x) and pose
the following question: When does the probability distribution pp(x) of their sum x=x; +x, +---+xy have the
same shape (within a scale factor) as the distribution p(x) of the individual quantities? The standard answer is that
p(x) should be Gaussian, because the sum of N Gaussian random variables is again a Gaussian, but with variance
equal to N times that of the individual signals. However, if we allow for distributions with infinite variance, additional
solutions are possible. The resulting probability distributions, known as stable or Levy distributions, have infinite
variance and are characterized by a thin main lobe and fat tails, resembling the shape of the histogram in
Figure 1.6(b). Interestingly enough, the Gaussian distribution is a stable distribution with finite variance (actually the
only one). Because Gaussian and stable non-Gaussian distributions are invariant under linear signal processing
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operations, they are very important in signal processing.
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FIGURE 1.5
One-step-increment time series for the infrared data.
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FIGURE 1.6
Histograms for the infrared increment signals.

Correlation and spectral analysis. Although scatter plots (see Figure 1.1) illustrate nicely the existence of
correlation, to obtain quantitative information about the correlation structure of a time series x(7) with zero mean
value, we use the empirical normalized autocorrelation sequence

N-1
D x(m)x’ (n—1)
p) === — (1.2.1)
2 xmf
n=0
which is an estimate of the theoretical normalized autocorrelation sequence. For lag [/ =0, the sequence is perfectly
correlated with itself and we get the maximum value of 1. If the sequence does not change significantly from sample
to sample, the correlation of the sequence with its shifted copies, though diminished, is still close to 1. Usually, the
correlation decreases as the lag increases because distant samples become less and less dependent. Note that
reordering the samples of a time series changes its autocorrelation but not its histogram.
We say that signals whose empirical autocorrelation decays fast, such as an exponential, have short-memory or
short-range dependence. If the empirical autocorrelation decays very slowly, as a hyperbolic function does, we say
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that the signal has long-memory or long-range dependence. Furthermore, we shall see in the next section that
effective modeling of time series with short or long memory requires different types of models.

The spectral density function shows the distribution of signal power or energy as a function of frequency (see
Figure 1.7). The autocorrelation and the spectral density of a signal form a Fourier transform pair and hence contain
the same information. However, they present this information in different forms, and one can reveal information that
cannot be easily extracted from the other. It is fair to say that the spectral density is more widely used than the
autocorrelation.

Signal Spectral density

Power or energy

A

Time Frequency
FIGURE 1.7
Illustration of the concept of power or energy spectral density function of a random signal.

Joint signal analysis. In many applications, we are interested in the relationship between two different random
signals. There are two cases of interest. In the first case, the two signals are of the same or similar nature, and we want
to ascertain and describe the similarity or interaction between them.

In the second case, we may have reason to believe that there is a causal relationship between the two signals.
For example, one signal may be the input to a system and the other signal the output. The task in this case is to find an
accurate description of the system, that is, a description that allows accurate estimation of future values of the output
from the input. This process is known as system modeling or identification and has many practical applications,
including understanding the operation of a system in order to improve the design of new systems or to achieve better
control of existing systems.

1.3 Signal Modeling

In many theoretical and practical applications, we are interested in generating random signals with certain properties
or obtaining an efficient representation of real-world random signals that captures a desired set of their characteristics
(e.g., correlation or spectral features) in the best possible way. We use the term model to refer to a mathematical
description that provides an efficient representation of the “essential” properties of a signal.

For example, a finite segment {x(n)}¥} of any signal can be approximated by a linear combination of

constant (A4, =1) or exponentially fading (0< A, <1) sinusoids
M
x(n) =Y a,A cos(on+g,) (1.3.1)
k=1

where {a;, A, @, @ }i., are the model parameters. A good model should provide an accurate description of the
signal with 4M <« N parameters. From a practical viewpoint, we are most interested in parametric models, which
assume a given functional form completely specified by a finite number of parameters. In contrast, nonparametric
models do not put any restriction on the functional form or the number of model parameters.

If any of the model parameters in (1.3.1) is random, the result is a random signal. The most widely used model is
given by

M
x(n)=Y a, cos(an+g,)
k=1
where the amplitudes {a;} and the frequencies {a} are constants and the phases {¢,}" are random. This
model is known as the harmonic process model and has many theoretical and practical applications.
Suppose next that we are given a sequence @(n) of independent and identically distributed observations. We
can create a time series x(7n) with dependent observations, by linearly combining the values of @(n) as

x(n)= i h(k)w(n—k) (1.3.2)

k=—co
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which results in the widely used linear random signal model. The model specified by the convolution summation
(1.3.2) is clearly nonparametric because, in general, it depends on an infinite number of parameters. Furthermore,
the model is a linear, time-invariant system with impulse response A(k) that determines the memory of the model
and, therefore, the dependence properties of the output x(n). By properly choosing the weights A(k), we can
generate a'time series with almost any type of dependence among its samples.

In practical applications, we are interested in linear parametric models. As we will see, parametric models
exhibit a dependence imposed by their structure. However, if the number of parameters approaches the range of the
dependence (in number of samples), the model can mimic any form of dependence. The list of desired features for a
good model includes these: (1) the number of model parameters should be as small as possible (parsimony), (2)
estimation of the model parameters from the data should be easy, and (3) the model parameters should have a
physically meaningful interpretation.

If we can develop a successful parametric model for the behavior of a signal, then we can use the model for
various applications:

1. To achieve a better understanding of the physical mechanism generating the signal (e.g., earth structure in the case
of seismograms).

2. To track changes in the source of the signal and help identify their cause (e.g., EEG).

3. To synthesize artificial signals similar to the natural ones (e.g., speech, infrared backgrounds, natural scenes, data
network traffic).

4. To extract parameters for pattern recognition applications (e.g., speech and character recognition).

5. To get an efficient representation of signals for data compression (e.g., speech, audio, and video coding).

6. To forecast future signal behavior (e.g., stock market indexes) (Pindyck and Rubinfeld 1998).

In practice, signal modeling involves the following steps: (1) selection of an appropriate model, (2) selection of the
“right” number of parameters, (3) fitting of the model to the actual data, and (4) model testing to see if the model
satisfies the user requirements for the particular application. As we shall see in Chapter 8 this process is very
complicated and depends heavily on the understanding of the theoretical model properties (see Chapter 3), the amount of
familiarity with the particular application, and the experience of the user.

Rational or Pole-Zero Models

Suppose that a given sample x(n), at time #, can be approximated by the previous sample weighted by a
coefficient a, that is, x(n) = ax(n—1), where a is assumed constant over the signal segment to be modeled. To make
the above relationship exact, we add an excitation term w(n) , resulting in

x(n) = ax(n—1)+ w(n) (13.3)
where @(n) is an excitation sequence. Taking the z -transform of both sides, we have

X(z)=az"' X (2)+W(z) (1.3.4)
which results in the following system function:
X(z 1
H(z)= WEz; 1t (1.3.5)
By using the identity
H(z)= o =l+az'+a’z+ —l<a<l (1.3.6)
the single-parameter model in (1.3.3) can be expressed in the following nonparametric form
x(n) = a(n)+aw(n—-1)+a’e(n—2)+-- (1.3.7)

which clearly indicates that the model generates a time series with exponentially decaying dependence.
A more general model can be obtained by including a linear combination of the P previous values of the signal
and of the Q previous values of the excitation in (1.3.3), that is,

P 0
x(n)=Y (~a,)x(n=k)+ D d,o(n—k) (1.3.8)
k=1 k=0

The resulting system function



