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Preface to the Third Edition

The second edition of Statistical Mechanics was published in 1996. The new material added at
that time focused on phase transitions, critical phenomena, and the renormalization group —
topics that had undergone vast transformations during the years following the publication of
the first edition in 1972. In 2009, R. K. Pathria (R.K.P) and the publishers agreed it was time for
a third edition to incorporate the important changes that had occurred in the field since the
publication of the second edition and invited Paul B. Beale (P.D.B.) to join as coauthor. The two
authors agreed on the scope of the additions and changes and P.D.B. wrote the first draft of
the new sections except for Appendix F which was written by R.K.P. Both authors worked very
closely together editing the drafts and finalizing this third edition.

The new topics added to this edition are:

Bose-Einstein condensation and degenerate Fermi gas behavior in ultracold atomic gases:
Sections 7.2, 8.4, 11.2.A, and 11.9. The creation of Bose-Einstein condensates in ultracold
gases during the 1990s and in degenerate Fermi gases during the 2000s led to a revolution
in atomic, molecular, and optical physics, and provided a valuable link to the quantum
behavior of condensed matter systems. Several of P.D.B.’s friends and colleagues in physics
and JILA at the University of Colorado have been leaders in this exciting new field.
Finite-size scaling behavior of Bose-Einstein condensates: Appendix F. We develop an
analytical theory for the behavior of Bose-Einstein condensates in a finite system, which
provides a rigorous justification for singling out the ground state in the calculation of the
properties of the Bose-Einstein condensate.

Thermodynamics of the early universe: Chapter 9. The sequence of thermodynamic
transitions that the universe went though shortly after the Big Bang left behind mileposts
that astrophysicists have exploited to look back into the universe’s earliest moments. Major
advances in astronomy over the past 20 years have provided a vast body of observational
data about the early evolution of the universe. These include the Hubble Space Telescope’s
deep space measurements of the expansion of the universe, the Cosmic Background
Explorer’s precise measurements of the temperature of the cosmic microwave background,
and the Wilkinson Microwave Anisotropy Probe’s mapping of the angular variations in the
cosmic microwave background. These data sets have led to precise determinations of the
age of the universe, its composition and early evolution. Coincidentally, P.D.B.’s faculty
office is located in the tower named after George Gamow, a member of the faculty at the
University of Colorado in the 1950s and 1960s and a leader in the theory of nucleosynthesis
in the early universe.

Chemical equilibrium: Section 6.6. Chemical potentials determine the conditions
necessary for chemical equilibrium. This is an important topic in its own right, but also
plays a critical role in our discussion of the thermodynamics of the early universe in
Chapter 9.

xiii



xiv Preface to the Third Edition

Monte Carlo and molecular dynamics simulations: Chapter 16. Computer simulations have
become an important tool in modern statistical mechanics. We provide here a brief
introduction to Monte Carlo and molecular dynamics techniques and algorithms.
Correlation functions and scattering: Section 10.7. Correlation functions are central to the
understanding of thermodynamic phases, phase transitions, and critical phenomena. The
differences between thermodynamic phases are often most conspicuous in the behavior
of correlation functions and the closely related static structure factors. We have collected
discussions from the second edition into one place and added new material.
Fluctuation—dissipation theorem and the dynamical structure factor: Sections 15.3.A.,
15.6.A, and 15.6.B. The fluctuation—dissipation theorem describes the relation between
natural equilibrium thermodynamic fluctuations in a system and the response of the
system to small disturbances from equilibrium, and it is one of the cornerstones of
nonequilibrium statistical mechanics. We have expanded the discussion of the
fluctuation—dissipation theorem to include a derivation of the key results from linear
response theory, a discussion of the dynamical structure factor, and analysis of the
Brownian motion of harmonic oscillators that provides useful practical examples.

Phase equilibrium and the Clausius-Clapeyron equation: Sections 4.6 and 4.7. Much of the
text is devoted to using statistical mechanics methods to determine the properties of
thermodynamic phases and phase transitions. This brief overview of phase equilibrium
and the structure of phase diagrams lays the groundwork for later discussions.

Exact solutions of one-dimensional fluid models: Section 13.1. One-dimensional fluid
models with short-range interactions do not exhibit phase transitions but they do display
short-range correlations and other behaviors typical of dense fluids.

Exact solution of the two-dimensional Ising model on a finite lattice: Section 13.4.A. This
solution entails an exact counting of the microstates of the microcanonical ensemble and
provides analytical results for the energy distribution, internal energy, and heat capacity of
the system. This solution also describes the finite-size scaling behavior of the Ising model
near the transition point and provides an exact framework that can be

used to test Monte Carlo methods.

Summary of thermodynamic assemblies and associated statistical ensembles: Appendix H.
We provide a summary of thermodynamic relations and their connections to statistical
mechanical ensembles. Most of this information can be found elsewhere in the text, but we
thought it would be helpful to provide a rundown of these important connections in one
place.

Pseudorandom number generators: Appendix I. Pseudorandom number generators are
indispensable in computer simulations. We provide simple algorithms for generating
uniform and Gaussian pseudorandom numbers and discuss their properties.

Dozens of new homework problems.

The remainder of the text is largely unchanged.

The completion of this task has left us indebted to many a friend and colleague. R.K.P. has

already expressed his indebtedness to a good number of people on two previous occasions —
in 1972 and in 1996 — so, at this time, he will simply reiterate the many words of gratitude he
has already written. In addition though, he would like to thank Paul Beale for his willingness to

be a partner in this project and for his diligence in carrying out the task at hand both arduously
and meticulously.

On his part, P.D.B. would like to thank his friends at the University of Colorado at Boulder

for the many conversations he has had with them over the years about research and pedagogy
of statistical mechanics, especially Noel Clark, Tom DeGrand, John Price, Chuck Rogers, Mike
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Dubson, and Leo Radzihovsky. He would also like to thank the faculty of the Department of
Physics for according him the honor of serving as the chair of this outstanding department.

Special thanks are also due to many friends and colleagues who have read sections of
the manuscript and have offered many valuable suggestions and corrections, especially Tom
DeGrand, Michael Shull, David Nesbitt, Jamie Nagle, Matt Glaser, Murray Holland, Leo Radzi-
hovsky, Victor Gurarie, Edmond Meyer, Matthew Grau, Andrew Sisler, Michael Foss-Feig, Allan
Franklin, Shantha deAlwis, Dmitri Reznik, and Eric Cornell.

P.D.B. would like to take this opportunity to extend his thanks and best wishes to Professor
Michael E. Fisher whose graduate statistical mechanics course at Cornell introduced him to this
elegant field. He would also like to express his gratitude to Raj Pathria for inviting him to be part
of this project, and for the fun and engaging discussions they have had during the preparation
of this new edition. Raj’s thoughtful counsel always proved to be valuable in improving the text.

P.D.B.’s greatest thanks go to Matthew, Melanie, and Erika for their love and support.

R.KP.
P.D.B.



Preface to the Second Edition

The first edition of this book was prepared over the years 1966 to 1970 when the subject of phase
transitions was undergoing a complete overhaul. The concepts of scaling and universality had
just taken root but the renormalization group approach, which converted these concepts into
a calculational tool, was still obscure. Not surprisingly, my text of that time could not do justice
to these emerging developments. Over the intervening years I have felt increasingly conscious
of this rather serious deficiency in the text; so when the time came to prepare a new edition, my
major effort went toward correcting that deficiency.

Despite the aforementioned shortcoming, the first edition of this book has continued to
be popular over the last 20 years or so. I, therefore, decided not to tinker with it unnecessar-
ily. Nevertheless, to make room for the new material, I had to remove some sections from the
present text which, I felt, were not being used by the readers as much as the rest of the book was.
This may turn out to be a disappointment to some individuals but I trust they will understand
the logic behind it and, if need be, will go back to a copy of the first edition for reference. I, on
my part, hope that a good majority of the users will not be inconvenienced by these deletions.
As for the material retained, I have confined myself to making only editorial changes. The sub-
ject of phase transitions and critical phenomena, which has been my main focus of revision,
has been treated in three new chapters that provide a respectable coverage of the subject and
essentially bring the book up to date. These chapters, along with a collection of more than 60
homework problems, will, I believe, enhance the usefulness of the book for both students and
instructors.

The completion of this task has left me indebted to many. First of all, as mentioned in
the Preface to the first edition, I owe a considerable debt to those who have written on this
subject before and from whose writings I have benefited greatly. It is difficult to thank them
all individually; the bibliography at the end of the book is an obvious tribute to them. As for
definitive help, I am most grateful to Dr Surjit Singh who advised me expertly and assisted me
generously in the selection of the material that comprises Chapters 11 to 13 of the new text;
without his help, the final product might not have been as coherent as it now appears to be. On
the technical side, I am very thankful to Mrs. Debbie Guenther who typed the manuscript with
exceptional skill and proof read it with extreme care; her task was clearly an arduous one but
she performed it with good cheer — for which I admire her greatly.

Finally, I wish to express my heartfelt appreciation for my wife who let me devote myself
fully to this task over a rather long period of time and waited for its completion ungrudgingly.

R.K.P.

Xvii
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This book has arisen out of the notes of lectures that I gave to the graduate students at
the McMaster University (1964-1965), the University of Alberta (1965-1967), the University of
Waterloo (1969-1971), and the University of Windsor (1970-1971). While the subject matter, in
its finer details, has changed considerably during the preparation of the manuscript, the style
of presentation remains the same as followed in these lectures.

Statistical mechanics is an indispensable tool for studying physical properties of matter
“in bulk” on the basis of the dynamical behavior of its “microscopic” constituents. Founded
on the well-laid principles of mathematical statistics on one hand and Hamiltonian mechanics
on the other, the formalism of statistical mechanics has proved to be of immense value to the
physics of the last 100 years. In view of the universality of its appeal, a basic knowledge of this
subject is considered essential for every student of physics, irrespective of the area(s) in which
he/she may be planning to specialize. To provide this knowledge, in a manner that brings out
the essence of the subject with due rigor but without undue pain, is the main purpose of this
work.

The fact that the dynamics of a physical system is represented by a set of quantum states
and the assertion that the thermodynamics of the system is determined by the multiplicity of
these states constitute the basis of our treatment. The fundamental connection between the
microscopic and the macroscopic descriptions of a system is uncovered by investigating the
conditions for equilibrium between two physical systems in thermodynamic contact. This is
best accomplished by working in the spirit of the quantum theory right from the beginning;
the entropy and other thermodynamic variables of the system then follow in a most natural
manner. After the formalism is developed, one may (if the situation permits) go over to the
limit of the classical statistics. This message may not be new, but here I have tried to follow it as
far as is reasonably possible in a textbook. In doing so, an attempt has been made to keep the
level of presentation fairly uniform so that the reader does not encounter fluctuations of too
wild a character.

This text is confined to the study of the equilibrium states of physical systems and is
intended to be used for a graduate course in statistical mechanics. Within these bounds, the
coverage is fairly wide and provides enough material for tailoring a good two-semester course.
The final choice always rests with the individual instructor; I, for one, regard Chapters 1 to 9
(minus afew sections from these chapters plus a few sections from Chapter 13) as the “essential
part” of such a course. The contents of Chapters 10 to 12 are relatively advanced (not necessar-
ily difficult); the choice of material out of these chapters will depend entirely on the taste of
the instructor. To facilitate the understanding of the subject, the text has been illustrated with
a large number of graphs; to assess the understanding, a large number of problems have been
included. I hope these features are found useful.
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1 feel that one of the most essential aspects of teaching is to arouse the curiosity of the
students in their subject, and one of the most effective ways of doing this is to discuss with them
(in a reasonable measure, of course) the circumstances that led to the emergence of the subject.
One would, therefore, like to stop occasionally to reflect upon the manner in which the various
developments really came about; at the same time, one may not like the flow of the text to be
hampered by the discontinuities arising from an intermittent addition of historical material.
Accordingly, I decided to include in this account a historical introduction to the subject which
stands separate from the main text. I trust the readers, especially the instructors, will find it of
interest.

For those who wish to continue their study of statistical mechanics beyond the confines
of this book, a fairly extensive bibliography is included. It contains a variety of references — old
as well as new, experimental as well as theoretical, technical as well as pedagogical. I hope that
this will make the book useful for a wider readership.

The completion of this task has left me indebted to many. Like most authors, I owe con-
siderable debt to those who have written on the subject before. The bibliography at the end of
the book is the most obvious tribute to them; nevertheless, I would like to mention, in particu-
lar, the works of the Ehrenfests, Fowler, Guggenheim, Schrédinger, Rushbrooke, ter Haar, Hill,
Landau and Lifshitz, Huang, and Kubo, which have been my constant reference for several years
and have influenced my understanding of the subject in a variety of ways. As for the preparation
of the text, I am indebted to Robert Teshima who drew most of the graphs and checked most of
the problems, to Ravindar Bansal, Vishwa Mittar, and Surjit Singh who went through the entire
manuscript and made several suggestions that helped me unkink the exposition at a number
of points, to Mary Annetts who typed the manuscript with exceptional patience, diligence and
care, and to Fred Hetzel, Jim Briante, and Larry Kry who provided technical help during the
preparation of the final version.

As this work progressed I felt increasingly gratified toward Professors E C. Auluck and
D. S. Kothari of the University of Delhi with whom I started my career and who initiated me
into the study of this subject, and toward Professor R. C. Majumdar who took keen interest
in my work on this and every other project that I have undertaken from time to time. I am
grateful to Dr. D. ter Haar of the University of Oxford who, as the general editor of this series,
gave valuable advice on various aspects of the preparation of the manuscript and made several
useful suggestions toward the improvement of the text. I am thankful to Professors J. W. Leech,
J. Grindlay, and A. D. Singh Nagi of the University of Waterloo for their interest and hospitality
that went a long way in making this task a pleasant one.

The final tribute must go to my wife whose cooperation and understanding, at all stages
of this project and against all odds, have been simply overwhelming.

RKP.



Historical Introduction

Statistical mechanics is a formalism that aims at explaining the physical properties of matter
in bulk on the basis of the dynamical behavior of its microscopic constituents. The scope of the
formalism is almost as unlimited as the very range of the natural phenomena, for in principle it
is applicable to matter in any state whatsoever. It has, in fact, been applied, with considerable
success, to the study of matter in the solid state, the liquid state, or the gaseous state, mat-
ter composed of several phases and/or several components, matter under extreme conditions
of density and temperature, matter in equilibrium with radiation (as, for example, in astro-
physics), matter in the form of a biological specimen, and so on. Furthermore, the formalism
of statistical mechanics enables us to investigate the nonequilibrium states of matter as well as
the equilibrium states; indeed, these investigations help us to understand the manner in which
a physical system that happens to be “out of equilibrium” at a given time ¢ approaches a “state
of equilibrium” as time passes.

In contrast with the present status of its development, the success of its applications, and
the breadth of its scope, the beginnings of statistical mechanics were rather modest. Barring
certain primitive references, such as those of Gassendi, Hooke, and so on, the real work on this
subject started with the contemplations of Bernoulli (1738), Herapath (1821), and Joule (1851)
who, in their own individual ways, attempted to lay a foundation for the so-called kinetic the-
ory of gases — a discipline that finally turned out to be the forerunner of statistical mechanics.
The pioneering work of these investigators established the fact that the pressure of a gas arose
from the motion of its molecules and could, therefore, be computed by considering the dynam-
ical influence of the molecular bombardment on the walls of the container. Thus, Bernoulli
and Herapath could show that, if temperature remained constant, the pressure P of an ordi-
nary gas was inversely proportional to the volume V of the container (Boyle's law), and that it
was essentially independent of the shape of the container. This, of course, involved the explicit
assumption that, at a given temperature T, the (mean) speed of the molecules was independent
of both pressure and volume. Bernoulli even attempted to determine the (first-order) correc-
tion to this law, arising from the finite size of the molecules, and showed that the volume V
appearing in the statement of the law should be replaced by (V — b), where b is the “actual”
volume of the molecules.!

Joule was the first to show that the pressure P was directly proportional to the square of
the molecular speed ¢, which he had initially assumed to be the same for all molecules. Kronig
(1856) went a step further. Introducing the “quasistatistical” assumption that, at any time t,

!As is well known, this “correction” was correctly evaluated, much later, by van der Waals (1873) who showed that,
for large V, bis four times the “actual” volume of the molecules; see Problem 1.4,



xxii Historical Introduction

one-sixth of the molecules could be assumed to be flying in each of the six “independent”
directions, namely +x, —x, +y, —y, +z, and —z, he derived the equation

P= £nmcz. (1)
3

where n is the number density of the molecules and m the molecular mass. Kronig, too,
assumed the molecular speed c to be the same for all molecules; so from (1), he inferred that
the kinetic energy of the molecules should be directly proportional to the absolute temperature
of the gas.

Kronig justified his method in these words: “The path of each molecule must be so irreg-
ular that it will defy all attempts at calculation. However, according to the laws of probability,
one could assume a completely regular motion in place of a completely irregular one!” It must,
however, be noted that it is only because of the special form of the summations appearing in the
calculation of the pressure that Kronig’s argument leads to the same result as the one following
from more refined models. In other problems, such as the ones involving diffusion, viscosity, or
heat conduction, this is no longer the case.

It was at this stage that Clausius entered the field. First of all, in 1857, he derived the
ideal-gas law under assumptions far less stringent than Kronig's. He discarded both leading
assumptions of Krénig and showed that equation (1) was still true; of course, ¢> now became
the mean square speed of the molecules. In a later paper (1859), Clausius introduced the con-
cept of the mean free path and thus became the first to analyze transport phenomena. It was in
these studies that he introduced the famous “Stosszahlansatz” — the hypothesis on the number
of collisions (among the molecules) — which, later on, played a prominent role in the monu-
mental work of Boltzmann.? With Clausius, the introduction of the microscopic and statistical
points of view into the physical theory was definitive, rather than speculative. Accordingly,
Maxwell, in a popular article entitled “Molecules,” written for the Encyclopedia Britannica,
referred to Clausius as the “principal founder of the kinetic theory of gases,” while Gibbs, in
his Clausius obituary notice, called him the “father of statistical mechanics.”?

The work of Clausius attracted Maxwell to the field. He made his first appearance with
the memoir “Illustrations in the dynamical theory of gases” (1860), in which he went much
farther than his predecessors by deriving his famous law of the “distribution of molecular
speeds.” Maxwell’s derivation was based on elementary principles of probability and was
clearly inspired by the Gaussian law of “distribution of random errors.” A derivation based on
the requirement that “the equilibrium distribution of molecular speeds, once acquired, should
remain invariant under molecular collisions” appeared in 1867. This led Maxwell to establish
what is known as Maxwell’s transport equation which, if skilfully used, leads to the same results
as one gets from the more fundamental equation due to Boltzmann.*

Maxwell’s contributions to the subject diminished considerably after his appointment,
in 1871, as the Cavendish Professor at Cambridge. By that time Boltzmann had already made
his first strides. In the period 1868-1871 he generalized Maxwell's distribution law to poly-
atomic gases, also taking into account the presence of external forces, if any; this gave rise
to the famous Boltzmann factor exp(—Be), where ¢ denotes the fotal energy of a molecule.
These investigations also led to the equipartition theorem. Boltzmann further showed that, just

2For an excellent review of this and related topics, see Ehrenfest and Ehrenfest (1912).

3For further details, refer to Montroll (1963) where an account is also given of the pioneering work of Waterston (1846,
1892).

“This equivalence has been demonstrated in Guggenheim (1960) where the coefficients of viscosity, thermal
conductivity, and diffusion of a gas of hard spheres have been calculated on the basis of Maxwell’s transport equation.
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like the original distribution of Maxwell, the generalized distribution (which we now call the
Maxwell-Boltzmann distribution) is stationary with respect to molecular collisions.

In 1872 came the celebrated H-theorem, which provided a molecular basis for the natural
tendency of physical systems to approach, and stay in, a state of equilibrium. This established
a connection between the microscopic approach (which characterizes statistical mechan-
ics) and the phenomenological approach (which characterized thermodynamics) much more
transparently than ever before; it also provided a direct method for computing the entropy
of a given physical system from purely microscopic considerations. As a corollary to the H-
theorem, Boltzmann showed that the Maxwell-Boltzmann distribution is the only distribution
that stays invariant under molecular collisions and that any other distribution, under the influ-
ence of molecular collisions, will ultimately go over to a Maxwell-Boltzmann distribution. In
1876 Boltzmann derived his famous transport equation, which, in the hands of Chapman and
Enskog (1916-1917), has proved to be an extremely powerful tool for investigating macroscopic
properties of systems in nonequilibrium states.

Things, however, proved quite harsh for Boltzmann. His H-theorem, and the consequent
irreversible behavior of physical systems, came under heavy attack, mainly from Loschmidt
(1876-1877) and Zermelo (1896). While Loschmidt wondered how the consequences of this
theorem could be reconciled with the reversible character of the basic equations of motion
of the molecules, Zermelo wondered how these consequences could be made to fit with the
quasiperiodic behavior of closed systems (which arose in view of the so-called Poincaré cycles).
Boltzmann defended himself against these attacks with all his might but, unfortunately, could
not convince his opponents of the correctness of his viewpoint. At the same time, the energeti-
cists, led by Mach and Ostwald, were criticizing the very (molecular) basis of the kinetic theory,
while Kelvin was emphasizing the “nineteenth-century clouds hovering over the dynamical
theory of light and heat.”®

All this left Boltzmann in a state of despair and induced in him a persecution complex.”
He wroste in the introduction to the second volume of his treatise Vorlesungen tiber Gastheorie
(1898):

I am convinced that the attacks (on the kinetic theory) rest on misunderstandings and
that the role of the kinetic theory is not yet played out. In my opinion it would be a blow
to science if contemporary opposition were to cause kinetic theory to sink into the oblivion
which was the fate suffered by the wave theory of light through the authority of Newton.
I am aware of the weakness of one individual against the prevailing currents of opinion.
In order to insure that not too much will have to be rediscovered when people return to
the study of kinetic theory I will present the most difficult and misunderstood parts of the
subject in as clear a manner as I can.

We shall not dwell any further on the kinetic theory; we would rather move on to the
development of the more sophisticated approach known as the ensemble theory, which may in
fact be regarded as the statistical mechanics proper.? In this approach, the dynamical state of a

SThese critics were silenced by Einstein whose work on the Brownian motion (1905b) established atomic theory once
and for ali.

5The first of these clouds was concerned with the mysteries of the “aether,” and was dispelled by the theory of relativ-
ity. The second was concerned with the inadequacy of the “equipartition theorem,” and was dispelled by the quantum
theory. ]

7Some people attribute Boltzmann'’s suicide on September 5, 1906 to this cause.

8Quotation from Montroll (1963).

9For a review of the historical development of kinetic theory leading to statistical mechanics, see Brush (1957, 1958,
1961a,b, 1965-1966).
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given system, as characterized by the generalized coordinates g; and the generalized momenta
pi, is represented by a phase point G(g;, p;) in a phase space of appropriate dimensionality. The
evolution of the dynamical state in time is depicted by the trajectory of the G-point in the phase
space, the “geometry” of the trajectory being governed by the equations of motion of the system
and by the nature of the physical constraints imposed on it. To develop an appropriate formal-
ism, one considers the given system along with an infinitely large number of “mental copies”
thereof; that is, an ensembie of similar systems under identical physical constraints (though, at
any time ¢, the various systems in the ensemble would differ widely in respect of their dynam-
ical states). In the phase space, then, one has a swarm of infinitely many G-points (which, at
any time t, are widely dispersed and, with time, move along their respective trajectories). The
fiction of a host of infinitely many, identical but independent, systems allows one to replace
certain dubious assumptions of the kinetic theory of gases by readily acceptable statements of
statistical mechanics. The explicit formulation of these statements was first given by Maxwell
(1879) who on this occasion used the word “statistico-mechanical” to describe the study of
ensembles (of gaseous systems) — though, eight years earlier, Boltzmann (1871) had already
worked with essentially the same kind of ensembles.

The most important quantity in the ensemble theory is the density function, p(q;, pi; t),
of the G-points in the phase space; a stationary distribution (dp/dt = 0) characterizes a sta-
tionary ensemble, which in tum represents a system in equilibrium. Maxwell and Boltzmann
confined their study to ensembles for which the function p depended solely on the energy E of
the system. This included the special case of ergodic systems, which were so defined that “the
undisturbed motion of such a system, if pursued for an unlimited time, would ultimately tra-
verse (the neighborhood of) each and every phase point compatible with the fixed value E of
the energy.” Consequently, the ensemble average, (f), of a physical quantity f, taken at any given
time ¢, would be the same as the long-time average, f, pertaining to any given member of the
ensemble. Now, f is the value we expect to obtain for the quantity in question when we make
an appropriate measurement on the system; the result of this measurement should, there-
fore, agree with the theoretical estimate (f). We thus acquire a recipe to bring about a direct
contact between theory and experiment. At the same time, we lay down a rational basis for a
microscopic theory of matter as an alternative to the empirical approach of thermodynamics!

A significant advance in this direction was made by Gibbs who, with his Elementary Prin-
ciples of Statistical Mechanics (1902), turned ensemble theory into a most efficient tool for the
theorist. He emphasized the use of “generalized” ensembles and developed schemes which, in
principle, enabled one to compute a complete set of thermodynamic quantities of a given sys-
tem from purely mechanical properties of its microscopic constituents.!? In its methods and
results, the work of Gibbs turned out to be much more general than any preceding treatment
of the subject; it applied to any physical system that met the simple-minded requirements
that (i) it was mechanical in structure and (ii) it obeyed Lagrange’s and Hamilton’s equa-
tions of motion. In this respect, Gibbs’s work may be considered to have accomplished for
thermodynamics as much as Maxwell's had accomplished for electrodynamics.

These developments almost coincided with the great revolution that Planck’s work of
1900 brought into physics. As is well known, Planck’s quantum hypothesis successfully resolved
the essential mysteries of the black-body radiation — a subject where the three best-established
disciplines of the nineteenth century, namely mechanics, electrodynamics, and thermodynam-
ics, were all focused. At the same time, it uncovered both the strengths and the weaknesses
of these disciplines. It would have been surprising if statistical mechanics, which linked
thermodynamics with mechanics, could have escaped the repercussions of this revolution.

'°In much the same way as Gibbs, but quite independently of him, Einstein (1902, 1903) also developed the theory of
ensembles.
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The subsequent work of Einstein (1905a) on the photoelectric effect and of Compton
(1923a,b) on the scattering of x-rays established, so to say, the “existence” of the quan-
tum of radiation, or the photon as we now call it.!' It was then natural for someone to
derive Planck’s radiation formula by treating black-body radiation as a gas of photons in the
same way as Maxwell had derived his law of distribution of molecular speeds for a gas of
conventional molecules. But, then, does a gas of photons differ so radically from a gas of
conventional molecules that the two laws of distribution should be so different from one
another?

The answer to this question was provided by the manner in which Planck’s formula was
derived by Bose. In his historic paper of 1924, Bose treated black-body radiation as a gas of pho-
tons; however, instead of considering the allocation of the “individual” photons to the various
energy states of the system, he fixed his attention on the number of states that contained “a par-
ticular number” of photons. Einstein, who seems to have translated Bose’s paper into German
from an English manuscript sent to him by the author, at once recognized the importance of
this approach and added the following note to his translation: “Bose’s derivation of Planck’s
formula is in my opinion an important step forward. The method employed here would also
yield the quantum theory of an ideal gas, which I propose to demonstrate elsewhere.”

Implicit in Bose's approach was the fact that in the case of photons what really mat-
tered was “the set of numbers of photons in various energy states of the system” and not the
specification as to “which photon was in which state”; in other words, photons were mutu-
ally indistinguishable. Einstein argued that what Bose had implied for photons should be
true for material particles as well (for the property of indistinguishability arose essentially
from the wave character of these entities and, according to de Broglie, material particles also
possessed that character).'? In two papers, which appeared soon after, Einstein (1924, 1925)
applied Bose’s method to the study of an ideal gas and thereby developed what we now call
Bose-Einstein statistics. In the second of these papers, the fundamental difference between
the new statistics and the classical Maxwell-Boltzmann statistics comes out so transparently
in terms of the indistinguishability of the molecules.'® In the same paper, Einstein discovered
the phenomenon of Bose-Einstein condensation which, 13 years later, was adopted by London
(1938a,b) as the basis for a microscopic understanding of the curious properties of liquid He*
at low temperatures.

Following the enunciation of Pauli’s exclusion principle (1925), Fermi (1926) showed that
certain physical systems would obey a different kind of statistics, namely the Fermi—Dirac
statistics, in which not more than one particle could occupy the same energy state (n; =0, 1). It
seems important to mention here that Bose’s method of 1924 leads to the Fermi-Dirac dis-
tributior}4as well, provided that one limits the occupancy of an energy state to at most one
particle.

" Strictly speaking, it might be somewhat misleading to cite Einstein’s work on the photoelectric effect as a proof of
the existence of photons. In fact, many of the effects (including the photoelectric effect), for which it seems necessary
to invoke photons, can be explained away on the basis of a wave theory of radiation. The only phenomena for which
photons seem indispensable are the ones involving fluctuations, such as the Hanbury Brown-Twiss effect or the Lamb
shift. For the relevance of fluctuations to the problem of radiation, see ter Haar (1967, 1968).

120f course, in the case of material particles, the total number N (of the particles) will also have to be conserved; this
had not to be done in the case of photons. For details, see Section 6.1.

1t is here that one encounters the correct method of counting “the number of distinct ways in which g; energy states
can accommodate n; particles,” depending on whether the particles are (i) distinguishable or (ii) indistinguishable. The
occupancy of the individual states was, in each case, unrestricted, thatis, n; =0, 1,2,....

" Dirac, who was the first to investigate the connection between statistics and wave mechanics, showed, in 1926, that
the wave functions describing a system of identical particles obeying Bose-Einstein (or Fermi-Dirac) statistics must be
symmetric (or antisymmetric) with respect to an interchange of two particles.



xxvi Historical Introduction

Soon after its appearance, the Fermi-Dirac statistics were applied by Fowler (1926) to
discuss the equilibrium states of white dwarf stars and by Pauli (1927) to explain the weak,
temperature-independent paramagnetism of alkali metals; in each case, one had to deal with a
“highly degenerate” gas of electrons that obey Fermi-Dirac statistics. In the wake of this, Som-
merfeld produced his monumental work of 1928 that not only put the electron theory of metals
on a physically secure foundation but also gave it a fresh start in the right direction. Thus, Som-
merfeld could explain practically all the major properties of metals that arose from conduction
electrons and, in each case, obtained results that showed much better agreement with exper-
iment than the ones following from the classical theories of Riecke (1898), Drude (1900), and
Lorentz (1904-1905). Around the same time, Thomas (1927) and Fermi (1928) investigated the
electron distribution in heavier atoms and obtained theoretical estimates for the relevant bind-
ing energies; these investigations led to the development of the so-called Thomas—Fermi model
of the atom, which was later extended so that it could be applied to molecules, solids, and nuclei
as well.13

Thus, the whole structure of statistical mechanics was overhauled by the introduction
of the concept of indistinguishability of (identical) particles.'® The statistical aspect of the
problem, which was already there in view of the large number of particles present, was now
augmented by another statistical aspect that arose from the probabilistic nature of the wave
mechanical description. One had, therefore, to carry out a two-fold averaging of the dynamical
variables over the states of the given system in order to obtain the relevant expectation val-
ues. That sort of a situation was bound to necessitate a reformulation of the ensemble theory
itself, which was carried out step by step. First, Landau (1927) and von Neumann (1927) intro-
duced the so-called density matrix, which was the quantum-mechanical analogue of the density
function of the classical phase space; this was elaborated, both from statistical and quantum-
mechanical points of view, by Dirac (1929-1931). Guided by the classical ensemble theory, these
authors considered both microcanonical and canonical ensembles; the introduction of grand
canonical ensembles in quantum statistics was made by Pauli (1927).17

The important question as to which particles would obey Bose-Einstein statistics and
which Fermi-Dirac remained theoretically unsettled until Belinfante (1939) and Pauli (1940)
discovered the vital connection between spin and statistics.!® It turns out that those particles
whose spin is an integral multiple of /i obey Bose-Einstein statistics while those whose spin
is a half-odd integral multiple of % obey Fermi-Dirac statistics. To date, no third category of
particles has been discovered.

Apart from the foregoing milestones, several notable contributions toward the devel-
opment of statistical mechanics have been made from time to time; however, most of those
contributions were concerned with the development or perfection of mathematical techniques
that make application of the basic formalism to actual physical problems more fruitful. A review
of these developments is out of place here; they will be discussed at their appropriate place in
the text.

'5For an excellent review of this model, see March (1957).

'80f course, in many a situation where the wave nature of the particles is not so important, classical statistics continue
to apply.

I7A detailed treatment of this development has been given by Kramers (1938).

18gee also Liiders and Zumino (1958).
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