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1

Introduction

Turbulent flows are ubiquitous in most application fields, ranging from en-
gineering to earth sciences and even life sciences. Therefore, simulation of
turbulent flows has become a key tool in both fundamental and applied re-
search. The complexity of Navier—Stokes turbulence, which is illustrated by
the fact that the number of degrees of freedom of turbulence grows faster
than O(Re“/ 4), where Re denotes the Reynolds number, renders the Direct
Numerical Simulation (DNS) of turbulence inapplicable to most flows of in-
terest. To alleviate this problem, truncated solutions in both frequency and
wavenumber may be sought, whose computational cost is much lower and may
ideally be arbitrarily adjusted. The most suitable approach to obtain such a
low-cost three-dimensional unsteady simulation of a turbulent flow is Large-
Eddy Simulation (LES), which was pioneered to compute meteorological flows
in the late 1950s and the early 1960s.

One of the main issues raised by LES is a closure problem: because of the
non-linearity of the Navier—Stokes equations, the effect of unresolved scales
must be taken into account to recover a reliable description of resolved scales
of motion (Chap. 2). This need to close the governing equations of LES has
certainly been the main area of investigation since the 1960s, and numerous
closures, also referred to as subgrid models, have been proposed. Most existing
subgrid models have been built using simplified views of turbulence dynamics,
the main physical phenomenon taken into account being the direct kinetic en-
ergy cascade from large to small scales that is observed in isotropic turbulence
and high-Reynolds fully developed turbulent flows. The most popular para-
digm for interscale energy transfer modeling is subgrid viscosity (Chap. 4),
which is an easy way to account for the net pumping of resolved kinetic energy
by unresolved scales. Other models have been based on mathematical manip-
ulations of governing equations, such as approximate deconvolution, and are,
at least theoretically, more general since they are not based on a priori as-
sumptions on turbulence dynamics (Chap. 5). An important observation is
that the vast majority of existing works dealing with subgrid modeling is de-
voted to incompressible flows, the main extension being for variable-density
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2 1 Introduction

flows (e.g. for meteorological flows) and low-speed reacting flows. In mos
cases, we are faced with ad hoc modifications of subgrid models developed fo
incompressible flows rather than new models developed ab initio.

The case of high-speed compressible flows (Chap. 3), in which compress
ibility effects are associated with high values of the Mach number, and which
may exhibit typical compressible phenomena such as compression shocks is
even more problematic, since the issue of accounting for true compressibility
effects has been hardly addressed up to now. One of the main objectives of
the present book is to analyze existing work and to provide a critical sur-
vey of existing closures. The main reasons for the complexity of compressible
turbulent flows are:

e The governing equations are more complex: we have five conservation equa-
tions supplemented by an equation of state, instead of three momentum
equations and a divergence free condition in the incompressible case; there
are more nonlinear mechanisms and more unknowns in the compressible
case.

e While the subgrid closure issue for the incompressible case is a pure in-
terscale energy transfer modeling problem, the complexity is dramatically
increased for the compressible case: one must account for both interscale
and intermodal® energy transfer. Energy can be transferred from one scale
to another, leading to an energy cascade phenomenon, but also from one
mode to another (e.g. energy of the vortical modes can be transformed in
to acoustic energy or heat). By their very nature, subgrid models developed
within the incompressible flow framework do not account for intermodal
transfer. It is also worth noting that intermodal energy transfer, but also
self-interaction of acoustic and entropy fluctuations is not governed by
the same mechanisms as the kinetic energy cascade. Therefore, modeling
paradigms such as subgrid viscosity are irrelevant to parametrize them.

Recent works dealing with LES theory have emphasized new important
issues. A first one is that the governing equations for LES, which are usually
obtained by applying a scale separation operator to the original Navier—Stokes
equations, are nothing but a model of what is really done in practical simu-
lations. A real LES simulation is carried out on a given computational grid
with a given numerical method. Therefore, the removal of some small scales
of the full solution of the exact Navier-Stokes equations originates in a com-
plex combination of truncation in the space-time resolution? and numerical
errors which is still not well understood. A direct consequence is that gov-
erning equations found in the LES literature must be interpreted as ad hoc

! We anticipate that compressible turbulent fluctuations can be viewed as combi-
nation of three fundamental physical modes: vortical modes, acoustic modes and
entropy modes.

2 This truncation is intuitively understood considering the Nyquist theorem, which
states that there exists an upper limit in the spectral content of a finite set of
samples.
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tools which mimic true LES solutions rather than exact mathematical models
(Chap. 6). Pioneering work in this research area has emphasized several open
problems:

e The definition of a formal scale separation operator which mimics real LES
on bounded domains and which accounts for features of the computational
grid and those of the numerical method.

e Discretization errors cannot be neglected, since they can overwhelm subgrid
model effects if dissipative/stabilized numerical methods are used without
care.

e Discretization errors and subgrid models can interact, sometime leading
to an unexpected increase in result accuracy, due to partial cancellation
between discretization and modeling errors.

Once again, the problem is much more complex when compressible flows
are addressed. The main reason is that the number of mathematical and phys-
ical symmetries of the continuous equations to be preserved by the numeri-
cal method is larger than in the incompressible case, and that additional
constraints, such as preservation of fundamental thermodynamic laws, arise.
Here, both the numerical method and the subgrid models, or at least their
sum, should satisfy these new requirements. These new aspects have been
hardly considered up to now. Another point is that many popular stabilized
methods designed to compute flows with shocks within the RANS framework
have been observed to be badly suited for LES purposes, since they are too
dissipative.

Another important issue is the proper formulation of boundary conditions
for LES (Chap. 7), the main problems being the definition of unsteady turbu-
lent inflow conditions and wall models.?> Wall models have been investigated
in the early 1970s, and since that time several different models have been pro-
posed and assessed. However no genuine extension for compressible flows is
available. The main strategy used so far was to assume that subgrid compress-
ibility effects are negligible in the near-wall region if the computational grid is
not too coarse. Research on turbulent inflow conditions is much more recent
since it has been identified as a key issue only in the late 1990s. Existing work
mostly addresses the incompressible flow case, and often is applied directly
to compressible flow simulations. Nothing is done to reconstruct acoustic and
entropy fluctuations at the turbulent inlet.

In order to illustrate the state-of-the art of modeling applied to ﬂow simu-
lation, three chapters summarize significant applications in the field of LES for
compressible flows. Chapter 8 gives an overview of contributions dedicated to
subsonic flows, Chap. 9 focuses on applications dedicated to supersonic flows
without shock, and Chap. 10 reviews applications with shock turbulence in-
teractions.

3 A wall model is a specific subgrid model used to prescribe boundary conditions
on solid surfaces when the LES grid is too coarse to allow for the use of the usual
no-slip boundary condition.
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LES of compressible flows remains unexplored, and based on variable-
density extensions of models, methods and paradigms developed within the
incompressible-flow framework. Limitations of the available compressible LES
theory are evident, and may prohibit improvement of the results in many cases.
The objective of this book is to provide the reader with a comprehensive state-
of-the-art presentation of compressible LES, but also to point out gaps in the
theoretical framework, with the hope to help both the fluid engineer in an
educated application of compressible LES, and the specialist in further model
development.



2

LES Governing Equations

This chapter is divided in five main parts. The first one is devoted to the
presentation of the chosen set of equations. The second part deals with the
filtering paradigm and its peculiarities in the framework of compressible flows.
In particular the question of discontinuities is addressed and the Favre filtering
is introduced. Since the formulation of the energy equation is not unique, the
third part first presents different popular formulations. Physical assumptions
which permit a simplification of the system of equations are discussed. Fur-
thermore, additional relationships relevant to LES modeling are introduced.
Finally, in the last part, fundamentals of LES modeling are established and the
distinction of the models according to functional and structural approaches is
introduced.

2.1 Preliminary Discussion

Large-eddy simulation relies on the idea that some scales of the full turbulent
solutions are discarded to obtain a desired reduction in the range of scales
required for numerical simulation. More precisely, small scales of the flow are
supposed to be more universal (according to the celebrated local isotropy hy-
pothesis by Kolmogorov) and less determined by boundary conditions than
the large ones in most engineering applications. Very large scales are some-
times also not directly represented during the computation, their effect must
also be modeled. This mesoscale modeling is popular in the field of meteo-
rology and oceanography. Let us first note here that small and large scales
are not well defined concepts, which are flow dependent and not accurately
determined by the actual theory of LES.

In practice, as all simulation techniques, LES consists of solving the set of
governing equations for fluid mechanics (usually the Navier-Stokes equations,
possibly supplemented by additional equations) on a discrete grid, i.e. using
a finite number of degrees of freedom. The essential idea is that the spatial
distribution of the grid nodes implicitly generates a scale separation, since

E. Garnier et al., Large Eddy Simulation for Compressible Flows,
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6 2 LES Governing Equations

scales smaller than a typical scale associated to the grid spacing cannot be
captured. It is also worthy noting that numerical schemes used to discretize
continuous operators, because they induce a scale-dependent error, introduce
an additional scale separation between well resolved scales and poorly resolved
ones.

As a consequence, the LES problem make several subranges of scales ap-
pearing:

e represented resolved scales, which are scales large enough to be accurately
captured on the grid with a given numerical method.

e represented non-resolved scales, which are scales larger than the mesh size,
but which are corrupted by numerical errors. These scales are the smallest
represented scales.

e non-represented scales, i.e. scales which are too small to be represented on
the computational grid.

One of the open problem in the field of LES is to understand and model
the existence of these three scale subranges and to write governing equations
for them. To address the modeling problem, several mathematical models for
the derivation of LES governing equations have been proposed since Leonard
in 1973, who introduced the filtering concept for removing small scales to LES.

The filtering concept makes it possible to address some problems analyti-
cally, including the closure problem and the definition of boundary conditions.
One the other hand the filtering concept introduces some artefacts, i.e. concep-
tual problems which are not present in the original formulation. An example
is the commutation error between the convolution filter and a discretization
scheme.

The most popular filter concept found in the literature for LES of com-
pressible flows is the convolution filter approach, which will be extensively
used hereafter. Several other concepts have been proposed for incompress-
ible flow simulation, the vast majority of which having not been extended to
compressible LES.

2.2 Governing Equations
2.2.1 Fundamental Assumptions

The framework is restricted to compressible gas flows where the continuum
hypothesis is valid. This implies that the chosen set of equations will be derived
in control volumes that will be large enough to encompass a sufficient number
of molecules so that the concept of statistical average hold. The behavior of the
fluid can then be described by its macroscopic properties such as its pressure,
its density and its velocity. Even if one can expect that the Knudsen number
(ratio of the mean free path of the molecules over a characteristic dimension
of the flow) be of the order of 1 in shocks, Smits and Dussauge [266] notice
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that for shocks of reasonable intensity (where the shock thickness is of the
order of few mean free paths) the continuum equations for the gas give shock
structure in agreement with experiments.

For sake of simplicity, we consider only gaseous fluid: multi-phase flows
are not considered. Furthermore, we restrict our discussion to non-reactive
mono-species gases. With respect to issues related to combustion the reader
may consult Ref. [220]. Moreover, the scope of this monograph is restricted to
non-hypersonic flows (Mach < 6 in air) for which dissociation and ionization
effects occurring at the molecular level can be neglected. Temperature differ-
ences are supposed to be sufficiently weak so that radiative heat transfer can
be neglected. Furthermore, a local thermodynamic equilibrium is assumed to
hold everywhere in the flow. With the aforementioned assumptions a perfect
gas equation of state can be employed. We restrict ourselves to Newtonian
fluids for which the dynamic viscosity varies only with temperature. Since we
consider non-uniform density fields, gravity effects could appear. Neverthe-
less, the Froude number which describes the significance of gravity effects as
computed to inertial effects is assumed to be negligible regarding the high
velocity of the considered flows (Mach > 0.2).

Finally, the compressible Navier-Stokes equations which express the con-
servation of mass, momentum, and energy are selected as a mathematical
model for the fluids considered in this textbook. These differential equations
are supplemented by an algebraic equation, the perfect gas equation of state.

2.2.2 Conservative Formulation

The way the energy conservation is expressed in the Navier-Stokes equations is
not unique. Formulations exist for the temperature, pressure, enthalpy, inter-
nal energy, total energy, and entropy. Nevertheless, the only way to formulate
this equation in conservative form is to chose the total energy. The conserva-
tive formulation is necessary for capturing possible discontinuities of the flow
at the correct velocity in numerical simulations [155].

Using this form, the Navier-Stokes equations can be written as:

Op  Opu;
ot (91']‘ ’ (2 1)
Opu; — Opu,u; dp day;
b et e} — , 2.2
ot Ox; dx; O, (22)
()pE " ()(,DE + P)Uj _ aau“l . 5} (23)

ot o, oz, 0z,

where t and z; are independent variables representing time and spatial coordi-
nates of a Cartesian coordinate system x, respectively. The three components
of the velocity vector u are denoted u,; (1 = 1,2,3). The summation conven-
tion over repeated indices applies. The total energy per mass unit F is given
by:



