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Symmetry and the solid state

1.1. Introduction

THE history of man’s interest in symmetry goes back many centuries (Belov 19565,
Coxeter and Moser 1965, Steno 1669), but its study on a modern scientific basis can
be considered to have been started by the Abbé Haiiy. Haiiy studied the behaviour
of a specimen of calcite when it was cleaved and, by breaking it into smaller and
smaller pieces and studying the angles between the faces of the fragments, he con-
vinced himself that the crystal was made up by the repetition of a large number of
identical units. Haily (1815a—d) studied many other crystals as well and summarized
his conclusions in his so-called Loi de symmétrie. The study of symmetry developed
through the nineteenth century with the formulation of ideas about point groups,
Bravais lattices, and space groups.

A point group is a set of symmetry operations acting at a point and obeying the
requirements that they should form a group in the mathematical sense; the crystal-
lographic point groups satisfy the extra requirement that they must be compatible
with a space lattice. Only a finite number of different combinations of symmetry
operations are observed to occur in real crystals. The derivation of these 32 point
groups was published by Hessel (1830) but his work was neglected for over 30 years
until they were derived again by Gadolin (1869). Since then the point groups have
been studied extensively, both in their original crystallographic context and, more
recently, in the context of group-theoretical studies of the physics and chemistry of
molecules and solids. There are useful crystallographic texts, for example, by
Buerger (1956) and Phillips (1963a). General discussions of the theory associated with
the applications of the group-theoretical studies of the point groups are given by
many authors (for example; Bhagavantam and Venkatarayudu 1962, Cracknell 19685,
Hamermesh 1962, Heine 1960, Tinkham 1964).

We can also consider another collection of groups, this time by considering trans-
lational symmetry operations. If we were to look at the internal structure of a crystal
we would find that it is made up of a large number of atoms or molecules regularly
arranged; it would be possible to find a set of points within the crystal which are
similar. That is, the crystal looks exactly the same if viewed from any one of these
points as it does if it is viewed from any other of them. If we consider such a set of
identical points they make up what the mathematicians call a /attice. It is possible
to show that there is only a small number of essentially different ways of arranging
a set of identical points so that the environment of each one is the same. This was
done by Bravais (1850) who showed that in a three-dimensional space there are only
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14 different lattices possible; consequently these are now known as Bravais lattices,
even though Frankenheim had deduced, incorrectly, 15 such lattices somewhat
earlier.

A point group is concerned with the symmetry of a finite object and for natural
crystals there are only 32 different point groups; a Bravais lattice is concerned with
the arrangement in space of a collection of mathematical points. To study fully the
internal structure of a crystal, that is, the exact detailed arrangement of the atoms
within the unit cell of a crystal, one needs a further development of symmetry studies
known as a space group. A space group takes into consideration the symmetry of an
arrangement of a set of identical objects, each of which is now not a point but is a
finite object or a collection of atoms having some symmetry of its own. The actual
operations present in a space group may be operations of the type which are present
in point groups, namely pure rotations, reflections, the inversion operation, and
roto-inversion or roto-reflection operations. But other operations are possible as well
in a space group: they are screw rotation—and glide reflection operations—of
symmetry. These are symmetry operations in which either a rotation axis or an
ordinary reflection plane has a bodily movement of the crystal combined with it.
In the descriptions of the derivation of the 230 space groups it is usually indicated
that we owe them to Fedorov and Schonflies and sometimes the name of Barlow is
added. A review of the history of the derivation of the space groups, together with
a list of the publications of Barlow, Fedorov, and Schonflies, is given in an article by
Burckhardt (1967). The derivation of the space groups has its origins in the works of
Jordan (1868, 1869) and of Sohncke (1879). Sohncke had derived those space groups,
of which there are 65, that contain only proper rotations and he noted that Jordan
had previously derived them mathematically but had not translated his results into
the more graphic terms of geometry. Schonflies re-derived these 65 space groups and
extended the theory to include the space groups containing reflection planes of
symmetry (Schonflies, 1887a, b, 1889, 1891). Similar results were derived by Fedorov
(1885, 1891a) but his work was written in Russian and has not become so well known
in western Europe; an account of the life and work of E. S. Fedorov and a list of his
publications is given (in Russian) in the book by Shafranovskii (1963). It is evident
that these two scientists began their works independently, one (Fedorov) as the
director of a mine in the Urals and the other (Schonflies) at the suggestion of F. Klein
at Gottingen, but in the course of time they heard of each other’s work and compared
their results. Barlow (1883) was first concerned with spherical packings and then
starting with Sohncke’s 65 groups he, too, obtained the remaining space groups by
including reflection operations of symmetry (Barlow 1894). Burckhardt (1967) con-
cludes that although Schonflies was not actually the first to establish the existence
of the 230 space groups his writings have been the means of making their enumeration
and identification generally known to the scientific world. His work, which is but
little later than that of Fedorov and is quite independent, culminates in the book
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Krystallsysteme und Krystallstructur (Schonflies 1891). A letter from Schonflies to
Fedorov, quoted by Burckhardt (1967), reads ‘I express my great joy about the
agreement with your own views; [ am particularly pleased, because I am no longer
alone with my theory ; it will still take great efforts before we shall succeed in winning
over the crystallographers. I concede you the priority with pleasure, it is of no primary
importance to me.’ A convenient detailed list of the space groups in modern notation
can be found in Volume 1 of the International tables for X-ray crystallography (Henry
and Lonsdale 1965). At the present time there are about 9000 compounds whose
space groups have been identified (for recent lists see Donnay, Donnay, Cox,
Kennard, and King (1963), Nowacki, Edenharter, and Matsumoto (1967), and
Wyckoff (1963, 1964, 1965, 1966, 1968)). The discovery of the two-dimensional space
groups, which are also listed in detail in Volume 1 of the International tables for
X-ray crystallography, is lost in the mists of antiquity because they arose in practice,
in many different civilizations, in the designs of wallpapers or tiled floors (see, for
example, Coxeter and Moser (1965), p. 33).

Although studies of a vast number of crystal structures had been undertaken by
X-ray methods and these crystals had been assigned to the appropriate space groups,
the study of the theory of symmetry seemed not to advance very much, after the
derivation of the 230 space groups in about 1890, until Shubnikov in 1951 published
a book called Symmetry and anti-symmetry of finite figures (in Russian, though this
work is now translated into English, together with a list of many references to other
works of Shubnikov (Shubnikov and Belov 1964)). A review of the developments in
the theory of symmetry over the last 50 years is given by Koptsik (1967a) and a brief
biography of A. V. Shubnikov is given at the beginning of volume 2 of Kristallografiya
(Soviet Phys. Crystallogr. (English transl.) (1957)). The new developments were con-
nected with introducing an operation of anti-symmetry. The classical theory of sym-
metry, point groups, Bravais lattices, and space groups, was essentially a 3-dimensional
study, that is, a point P would be specified by the vector r { = (x, y, z)}, and we
would consider the effect of symmetry operations on this point. Shubnikov’s basic
idea was to say that in addition to the ordinary coordinates x, y, and z of a point we
now also give each point a fourth coordinate, s, which can only take one of two pos-
sible values. The coordinate s can be the spin of a particle and the two allowed values
will then correspond to spin up and spin down. Or, in purely abstract terms, they may
be two colours such as black and white. If we include the coordinate s and if the
values of s for the various atoms are randomly specified then the symmetry of the
lattice has been completely destroyed. But if the spins are all parallel to a particular
direction or if they are arranged in some regular fashion it is possible for some fraction
of the symmetry to survive. If we introduce a new operation, which we may callthe
operation of anti-symmetry, R, and consider this in conjunction with all the ordinary
point-group and space-group operations it is possible to obtain a whole collection of
new point groups and space groups which are called black and white groups, or
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magnetic groups, or Shubnikov groups. The idea of black and white groups was
actually introduced long before Shubnikov’s work, by Heesch (1929a, b, 1930a, b)
and also discussed by Woods (1935a—c), but at that time there seemed to be no very
great use for these groups in the description of physical systems. It was only with the
introduction of the use of neutron diffraction techniques that it became apparent
that these groups could be used in the description of magnetically ordered structures.
If we think of s as being the two allowed values of a magnet’s direction, parallel and
anti-parallel to a particular direction, then # is the operation that reverses a magnetic
moment. # can then be thought of as being the operation of time-inversion.

The theory of finite groups dates from the time of Cauchyf who was responsible
for noticing that a number of apparently disconnected facts could be explained
simultaneously by introducing the concept of a group. Galois§ added to the theory
a number of new concepts, including that of an invariant subgroup, and part of his
work on the theory of equations was a first and most startling example of the power
of group theory in its applications. However, it is to Serret (1866) that we owe the
first connected account of group theory. Since then there has been an increasing flow
of literature on the subject and today abstract group theory still flourishes as a major
topic for research. Furthermore, the variety of applications of finite groups in a host
of mathematical situations as diverse as the theory of permutations, the study of
symmetry, and the theories of algebraic and differential equations, to mention just
a few, means that a study of groups is essential for those engaged in many disciplines
requiring mathematical techniques. The natural sciences are riddled with examples
of problems requiring a knowledge of group theory and it is a safe assumption that
the biological sciences and perhaps even the social sciences, as they become in-
creasingly mathematical, will produce further interesting applications.

In a mathematical theory it is often possible to pick out a number of famous
scholars who have been responsible for the major advances. Group theory is no ex-
ception. The only fear we have in mentioning certain names is that those of many
others who have made great advances are likely to be omitted. However, it is surely
no injustice to single out the names of Sylow, Frobenius, Burnside, Schur, Miller,
and Mackey (apologizing immediately to Noether, Brauer, Ito, and many others
who have made great contributions to the theory of abstract groups but whose work
is not so directly related to the applications in this book).

Sylow (1872) made considerable progress in describing the structure of a finite
group particularly in relation to its number of elements when this number is factor-
ized as a product of primes. Frobenius (1896a, b, 1898) originated and was largely
responsible for the theory of group representations and group characters, though
Burnside (1903, 1911) made such significant simplifications and was responsible for
so many original results that he also must be thought of as a group theoretician of
great influence.

11789-1857.  §1811-32.
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As a worker with a prodiguous output (of approximately 800 papers between
1894 and 1946) Miller (1894, 1946) devoted considerable attention to the investigation
of the structures and properties of various groups of finite order. He was responsible
for determining the numbers of finite groups of various specific orders and studying
the interrelationships between the structures of these groups, as exemplified by their
generating relations.

The study of relations between representations of a group and those of an invariant
subgroup leads inevitably to projective representations. Schur was the first to notice
this and in an astounding sequence of definitive papers (1904, 1907, 1911) he not only
laid the foundations of the general theory of projective representations but established
most of the results that are regarded as being of particular significance. Again it was
Frobenius (1898) who was responsible for the first construction of what is now called
an induced representation. However, this particular notion, so important to applica-
tions in physics, was not developed significantly until after 1950 when Mackey in a
series of papers (1951, 1952, 1953a, b, 1958) made extremely important advances
that already find considerable application not only in the theory of space groups but
throughout the whole realm of theoretical physics (see also Mackey (1968)).

We have described the importance of point groups, Bravais lattices, and space
groups in specifying both the macroscopic symmetry of a crystal, as determined by
goniometry, and the symmetry of the internal structure of a crystal, as determined
by X-ray diffraction or neutron diffraction experiments. In classical physics there
are some applications of group theory, such as, for instance, the investigation of the
normal modes of vibration of a molecule or solid (Wigner 1930) or the determination,
for a crystal belonging to a given point group, of relationships that may exist between
the various components of a tensor describing some macroscopic property (see, for
example, Nye (1957)). However, it was with the advent of quantum mechanics that
all the powerful mathematics of group theory and representation theory really be-
came most useful in helping to understand physical systems. Much of the pioneer
work on the application of group theory in quantum mechanics was done by Weyl,
Wigner, and von Neumann (see Weyl (1931), the translation of the classic book by
Wigner (1959) and the collected works of von Neumann (1961, 1963)). In studying
a crystal at the microscopic level one has to remember that each of the individual
particles of which the crystal is composed obeys quantum mechanics rather than
classical mechanics and therefore has to be described by an appropriate wave function
. The key to the application of group theory to quantum mechanics lies in the result
that is expounded in Chapter 11 of Wigner’s classic book (English translation, Wigner
(1959)). If a quantum-mechanical system is described by the appropriate Schrodinger
wave equation Wigner’s theorem can be summarized as follows: ‘ the representation
of the group of the Schrédinger equation which belongs to a particular eigenvalue is
uniquely determined up to a similarity transformation.” Apart from accidental de-
generacies this representation will be irreducible. The irreducible representations are
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therefore important because they can be used to label unambiguously the energy
levels of a quantum-mechanical system. The irreducible representations of the crystal-
lographic point groups and double point groups were determined a long time ago
(Bethe 1929) and have been used extensively in labelling the energy levels of molecules
(reviews and treatises include those of Eyring, Walter, and Kimball (1944), Nussbaum
(1968), Rosenthal and Murphy (1936), Slater (1963), and Wilson, Decius, and Cross
(1955)) in labelling the energy levels of ions or molecules in a crystal (reviews and
discussions include those of Herzfeld and Meijer (1961), Hutchings (1964), Judd
(1963), and McClure (1959a, b)) and also in labelling excitons in a crystal (Overhauser
1956). A particularly useful summary of the important properties of the crystallo-
graphic point groups and their representations is given by Koster, Dimmock, Wheeler,
and Statz (1963).

The theory that underlies the determination of the irreducible representations of
a space group was studied by Seitz (1936b) and first applied to symmorphic space
groups by Bouckaert, Smoluchowski, and Wigner (1936), to non-symmorphic space
groups by Herring (1942), and to double space groups by Elliott (195454). Subse-
quently, many authors have determined the irreducible representations of individual
space groups and, in doing so, have employed many different sets of notation. A
substantial review was written by Koster (1957) and there have recently been pub-
lished some sets of complete tables of the irreducible representations of all the 230
space groups (Faddeyev 1964, Kovalev 1965, Miller and Love 1967, Zak, Casher,
Gliick and Gur 1969). The importance of the irreducible representations of the space
groups lies in the fact that, as a result of Wigner’s theorem, they can be used in
labelling the energy levels of a particle or quasi-particle in a crystal; they can therefore
be used in labelling the electronic energy band structure and the phonon dispersion
curves in a crystalline solid (for reviews see Blount (1962), Jones (1960), Nussbaum
(1966), Slater (1965b, 1967) on electronic band structure, and Maradudin and Vosko
(1968), Warren (1968) on phonon dispersion curves). Similarly, the irreducible repre-
sentations of a space group can also be assigned to the magnon dispersion curves in a
magnetic crystal. However, there is an added complication because the black and
white Shubnikov space groups possess corepresentations rather than ordinary repre-
sentations (Dimmock and Wheeler 19625, Karavaev, Kudryavtseva, and Chaldyshev
1962, Loudon 1968, Wigner 1959, 1960a, b).

It is doubtful whether all the effort that workers have expended on the determina-
tion of point-group and space-group irreducible representations would be considered
worth while if the only result was a scheme for labelling energy levels. However, the
irreducible representations also enable one to determine the exact way in which a wave
function y; will transform under the various operations of the Schrédinger group of
a molecule or crystal. This often enables some simplifications to be made when an
unknown wave function is expanded in terms of a set of known functions such as
spherical harmonics (Altmann 1957, Altmann and Bradley 19635, Bell 1954, Betts
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1959, Mclntosh 1963, von der Lage and Bethe 1947) or plane waves (Cornwell 1969,
Luehrmann 1968, Schlosser 1962, Slater 19655, 1967). By restricting the expansion of
an unknown ¥, for an energy level E; to those functions that are known to belong to
the representation of E; considerable simplifications can very often be achieved in the
actual process of solving Schrodinger’s equation to determine ;. The knowledge of
the transformation properties of the wave functions y; is also of importance when
considering a transition of a system between two energy levels E; and E;. It is then
possible to use the condition that the quantum-mechanical matrix element. of the
transition is a pure number in order to determine, for any given perturbing potential,
whether a given transition is allowed or forbidden, that is, to determine selection rules.
The group-theoretical determination of selection rules for transitions in isolated mole-
cules and in ions or molecules in crystals involves the study of products of various
point-group representations and this is discussed in the references we have already
mentioned. To use the knowledge of the transformation properties of y; to study
selection rules for transitions involving non-localized states in crystals is more compli-
cated and initial work has been done by several authors (Birman 19625, 1963, Elliott
and Loudon 1960, Lax and Hopfield 1961, Zak 1962).

1.2. Group theory

We begin the mathematical work of this book by giving a short account of the theory
of groups and their representations. We do not give proofs of theorems as these
appear in the first few chapters of many well-known books such as those by Hamer-
mesh (1962), Lomont (1959), Lyubarskii (1960), and Wigner (1959). For the sake of
clarity, however, we illustrate some of the definitions and theorems by means of an
example; for this purpose we use a group containing six elements which, as an ab-
stract group we call GZ (see Table 5.1) and which, in one of its realizations, is the
symmetry group of an equilateral triangle.

There are two good reasons for starting with a preliminary account such as this.
The first is that it makes clear what the background to the work is, and hence what
it is recommended that the reader should be familiar with before proceeding with
the rest of the book. The second reason is that it serves to introduce a large amount
of notation; furthermore, when this is done on topics that are relatively familiar,
then a reader can adjust himself more easily to the style and notation of the authors
than if he is plunged immediately into new work.

The following set of definitions and theorems forms, therefore, the group-theoreti-
cal background to the work of this book. In later chapters some of them will be used
as building blocks for further theorems that are either more advanced or more
directly related to the study of solids. The groups that occur in the theory of solids
have quite a complicated structure and, if the theorems needed for dealing with them
are established rigorously and in complete detail, the proofs of such theorems require
some advanced algebraic methods not commonly met in introductory courses on



