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Preface

This book is based on the lecture notes of the course “Matrix Theory and Its
Application” given by the author for foreign graduate students at Northwestern
Polytechnical University, The textbook is intended for graduate students in
engineering and physics and puts an emphasis on the fundamental procedures
underlying the applications of matrix theory in engineering fields.

The objective of the book is to give readers a working knowledge of linear
algebra and matrix theory, enabling them to analyze engineering systems with
the mathematical tools of matrix theory. Readers are expected to obtain skills
ranging from the ability to perform insightful analyses and to the ability to
develop algorithms for numerical/computer analyses with the combination of
numerical calculus. In this latter regard, the book is also intended to serve as an
independent study text and as a reference book for beginning graduate students
and for practicing engineers.

The book is written to be readily accessible to students and readers having a
background in mathematics through calculus. The book itself is divided into
eight chapters. The first chapter provides introductory remarks and elementary
row operation and solution of linear systems. The second chapter is devoted to
matrix determinant and its properties. Chapter 3 discusses vector spaces and
matrix ranks, with the last of these focusing upon linear independence. Chapter
4 provides a comprehensive review of linear transformation including its matrix
representation and similarity. Fundamental principles of eigenvalue and
eigenvector are presented in Chapter 5, along with diagonalization of matrices,
exponential of matrices and some applications. Chapter 6 introduces orthogonal
subspace and how to obtain orthonormal set with Gram-Schmidt
orthogonalization process. Chapter 7 presents an introduction to some special
matrices including Hermitian matrices and positive definite matrices etc. The last

chapter introduces Singular Value Decomposition and Jordan forms of matrices.

— 1 —



Matrix Theory with Applications

This book’ s presentation emphasizes motivation and naturalness, driven
home by a wide variety of examples and by extensive and careful exercises.
Application and illustrative examples are discussed and presented in each
chapter, and exercises are provided at the end of each chapter. Although the
earlier chapters provide the basis for the latter chapters, each chapter is written
to be as self-contained as possible.

As a professor in mechanical engineering, frankly, it is beyond the author’s
ability to write such a mathematic book for graduate students. However, as the
lecturer for the course of “Matrix Theory and Its Application”, the author feels
that a textbook concentrating on engineering application is in great need for
students to better understand matrix theory. So this book is mainly based on the
lecture notes with many contents referred from the internet. The author has
endeavored to make the book be systematic and hope it can provide some useful
references for the students.

The author would like to thank his many former students including Faisal
Mahmood, Wajed Zaman, Abd Elmeraim Mohammed, Gribi Abd ellah, Faisal
Mushtaq, Afzaal Hassan, Sohail Ahmad, Sabeeh Ahmed, Mubashar Ahmed,
Naveed Igbal Gondal, Waseem Shahzad and many others who have both directly
and indirectly contributed to the content of this book.

Special thanks go to Zia-Ur-Rehman and Yu Wang for their contribution on
preparation of exercises and proofreading. Any remaining errors are, of course,
the responsibility of the author.

In closing, the author wishes to express his sincere gratitude and
appreciation to the International Office of Northwestern Polytechnical
University. The book could not have been finished without the help and

encouragement from the faculty and staff of the International Office.

Peng Xiongqi
Northwestern Polytechnical University
Xi’an, 2011
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Chapter 1 Matrix Basics

1.1 Matrix Definition

Matrices and Determinants were discovered and developed in the eighteenth
and nineteenth century. Initially, their development dealt with transformation of
geometric objects and solution of systems of linear equations. Matrices provide a
theoretically and practically useful way of approaching many types of problems
including: Solution of Systems of Linear Equations, Graph Theory, Theory of
Games, Computer Graphics, Cryptography, Electrical Networks ... ,etc.

Recall the curve-fitting problem: Given three points (x,,y,)s (25,y2),
( x3,y3), find a polynomial of degree 2 passing through the three given points.

Let the polynomial be y(x) =ax* + bx + ¢, where a, b and ¢ are to be

determined, the solution of the problem can be written as

v i x 1] [a
Y| — Ig ) ]. ,) (1.1)
3 A S | ¢

Eq. (1.1) can be transformed to a matrix format as
Ax =b (1. 2)
By transforming to a matrix format, we can present the linear system
equation in Eq. (1. 1) with a systematic way which will be very convenient for
usage with computer sources.
A matrix is simply a rectangular array of elements arranged in rows and
columns. The elements can be symbolic expressions or numbers. Matrix A is

denoted by
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lan a: ai; o Qia
Gz dazz dzs st Aoy

A = |ay azz Ay et Az, (1.3)
l_a ml A2 Az o Ay |

Each matrix has rows and columns and this defines the size of the matrix. If

9

a matrix A has “m” rows and “»n” columns, the “size of the matrix” is denoted by

mXn. The matrix A may also be denoted by [A],,.., to show that A is a matrix

with m rows and n columns. Each entry in the matrix is called the entry or

» % -9

element of the matrix and is denoted by “a;” where “i” is the row number and

“j” is the column number of the element.
A vector is a special type of matrix that has only one row (called a row
vector) or one column (called a column vector). Below, u is a column vector

while v is a row vector;

s v=1[1 4 2]

1.2 Type of Matrices

1.2.1 Square matrix

If the number of rows (m) of a matrix is equal to the number of columns (n)
of the matrix (m = n) , it is called a square matrix. The entries a;; saz »***1a,,
are called the diagonal elements of a square matrix. Sometimes the diagonal of

the matrix is also called the principal or main of the matrix,for example

5 0 0.3
0.2 13 0
—4 6 —1

The sum of the diagonal entries of a square matrix A is called the trace of the

matrix, that is.

~~
[
>

n
irA = E a,
i=1
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1.2.2 Upper trianguiar matrix

A square matrix for whicha; =0, ¢ > j is called an upper triangular matrix.

That is, all the elements below the diagonal entries are zero,for example

3 6

A= |0 9
Y 2

1.2.3 Lower triangular matrix
A square matrix for whicha; =0, j > i is called a lower triangular matrix.

[

That is, all th® elements above the diagonal entries are zero,for example

5 0 0]
A=11 7 0
lo 7 2l

1.2.4 Diagonal matrix

A sauare matrix with all non-diagonal elements equal to zero is called a
diagonal matrix. That is, only the diagonal entries of the square matrix can be

non-zero (a; =0. j # i ) .for example

[¢)

<
o
-]

0]

=0 7 0
0 0 2

One especially important diagonal matrix is termed the identity matrix. The

1.2.5 Identity matrix

identity matrix is. of course, always a square matrix, and its diagonal elements
are all ones, while its off-diagonal elements are all zeros. A diagonal matrix with
all diagonal elements equal to one is called an identity matrix ( a; =0, j % ; and
a; =0 for all ¢ ). We denote it as, I, = (§;) » the entries §; is the Kronecker

della;

1 ifi=j
8,‘,‘21

0 otherwise

A 4 X4 identity matrix would thus look like this:
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1 0 0 O

01 0 0
I:

0 0 1 O

0 0 0 1

The identity matrix is the functional equivalent of the number 1, because
multiplying a matrix by its identity matrix yields the same matrix, i.e. , Al =
A=IA.

1.2.6 Zero matrix

A matrix whose all entries are zero is called a zero matrix (a; =0 for all ¢

and j ).

1.3 Matrix Operations

1.3.1 Matrix addition and subtraction

Two matrices A and B can be added only if they are of the same size, in
other words, share the same dimensionality. If they do, they are said to be
conformable for addition. If not, they are non-conformable. The addition is
shown as

C=A-+B where ¢, =a, t+b, (1. 6)
meaning you simply sum the corresponding elements of A and B to get the

elements of C. Thus, if

Summing the two matrices yields
an +b6n an+b: aiz b
C=A+B= |ay + b ax+tby ax-tb;|=

L] as +bs  as + bz az + by
1+4 245 3—6 5 7 —3
4—7 548 6+9|=|—3 13 15
7+1 8—2 9+3 8 6 12
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Matrix subtraction works in the same way, except that elements are
subtracted instead of added. So for the subtraction C = A — B, you simply

subtract the corresponding elements ¢; =a; —b; .
1.3.2 Vector multiplication

Vectors are multiplied just like any other matrix. This is shown in the
following example:
b ,
[ai a; as] |b|= Ea,b,
b)

In this case, we are multiplying a row vector times a column vector. The
results are a scalar quantity. It is important to note that this product can only be
obtained if a and b have the same number of entries. If they have a different
number of entries then this product is not defined. We cannot multiply two row

or two column vectors.
1.3.3 Scalar multiplication

In linear algebra, individual numbers are referred to as scalars, from the
Latin word for ladder. Multiplication of a matrix by a scalar proceeds element-
by-element, with the scalar being multiplied by each element in turn.
Mathematically, we express multiplication of a matrix A by a scalar as

A =cla; |= [ca; ]
where ¢ is the scalar. Thus, multiplication by the scalar 3 is accomplished as:

. 3 17 3x3 3xX17 19 3
1.7 2] [3x1.7 3x2] [5.1 6
1.3.4 Matrix vector multiplication

A vector can be multiplied by a matrix. The result is a vector as shown
below :
a3 by anb, +anb, +ab,
Az Az Agz by | = |anby + awnb: + axb;
az Qs dsz bs ay b, +asb, + ay;b;
Here the result is a column vector. We can also multiply a vector by a

= 5

a; dap
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matrix.
1.3.5 Multiplication of matrices

Multiplication of one matrix by another is more complicated than scalar
multiplication, and is carried out in accordance with a strict rule. Two matrices A
and B can be multiplied only if the column numbers of A is equal to the row
numbers of B to give

[C] mca = [A mxp [B] pxn

If the two inner numbers are equal then the product is defined and the size of

the product will be given by the outside numbers. So how does one calculate the

elements of C matrix?

»
cy = D, auby (1.7)
k=1

for eachi =1, 2,+**, mandj =1, 2, *--, n. The choice of the row and column to
be used in the multiplication and summation is based on which element of the
product matrix C that you wish to calculate:

* The left-hand matrix row you work with is the same as the row of the
product matrix element you wish to calculate.

» The right-hand matrix column you work with is the same as the column of
the product matrix element you wish to calculate.

For example, suppose you define the matrix C as the product of the two
3X 3 matrices, A and B, shown above. If you wish to calculate the value of ¢}, ,

@ CIZ Cl.\

czl sz CZJ
Cn C:: C\.l

15

You work element-by-element across the first row of the left-hand matrix and
element-by-element down the first column of the right-hand matrix as follows:

@ @ by, by

c,y=|9n Gn 4y by by |= c,=a,b,*a,b,+a.b,,
a.” a.‘z a},‘ b"‘ b\l

Similarly, to calculate the value of ¢,; » you work across the second row of
the left-hand matrix and down the third column of the right-hand matrix:
S 6 —_
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!-Cll Cip Cy
Cy O @
Cy €y Cy

ra” al: al‘ b|| bl: @
C;z:l @ by b @ = cp=ayb,;tayb,tasb,

a, dy dy b, by, @

1.3.6 Multiplication by the identity matrix

The identity matrix is the matrix equivalent of the number 1 because the
result of multiplication of any matrix by its corresponding identity matrix is

simply the matrix itself. That is, for any matrix A, Al =A,IA =A .
1.3.7 The inverse of a matrix

For any square matrix A, if there exists a matrix X of the same order
such that

XA =AX =1 (1. 8)

then we call X the inverse of A and denote it by A™' . The inverse of a matrix, if

exists, must be unique. If A has an inverse then we say A is invertible or

nonsingular, otherwise we say A is singular.
1.3.7 Powers of matrices

We will confine ourselves to the situation where the power is an integer,
positive or negative, and proceed by first recalling that the nth power (n a
positive integer) of a number or a variable is simply the number multiplied by
itself n—1 times. Similarly, the nth power (n a negative integer) of a number or
a variable is simply the reciprocal, or inverse, of its nth power (n positive). It’
s pretty much the same when working with matrices. If A is a square
matrix, then

A'=A+A- A
A=A =1/A°
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1.3.9 The transpose of a matrix

The transpose of a matrix is an important concept that is frequently
encountered when working with matrices, and is represented by A'.
Operationally, the transpose of a matrix is created by “converting” its rows into
the corresponding columns of its transpose, meaning the first row of a matrix
becomes the first column of its transpose, the second row becomes the second

column, and so on. Thus, if

1 2 3
A= 14 5 6
7 8 9
the transpose of A is
1 2 31" 1 4 7
A'=14 5 6| =12 5 8
7 8 9 3 6 9

A square matrix A with real elements wherea; =a, fori =1,, nand j =
1, *+=, nis called a symmetric matrix. This is same as, if A=A" , then A is a

symmetric matrix:

1 2 3
A= |2 5 8
3 8 9
A square matrix A with real elements wherea; =—aj fori=1,, nand j=

1, «+, nis called a skew-symmetric matrix or anti-symmetric matrix. This is

same as, if A=—A" , then A is a skew-symmetric matrix:
0 2 3
A=1|—2 0 8
—3 —8 0
Since a; =— a; only if a; =— a; , all the diagonal elements of a skew

symmetric matrix have to be zero.
The complex conjugate of matrix A, denoted by A , is the matrix formed by
taking complex conjugate of A entrywise.
The conjugate transpose (or Hermitian transpose) of A , denoted by A" , is
— 8 —
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the (m X n) matrix whose (i, j) entry is the complex conjugate a,; of the (j, i)

entry of A,

1.4 Properties of Matrix Operations

1.4.1 Commutative law of addition

If A and B are m X n matrices. then
A+B=B+A (1.9

1.4.2 Associate law of addition

If A, B and C all are m X n matrices, then
A+ B+CO)=A+B+C (1.10)

1.4.3 Associate law of multiplication

If A, Band Carem X n, n X p and p X r size matrices, respectively, then
AMBC)=(AB)C (1.1D)

1.4.4 Distributive law

If A and B are m X n size matrices, and C and D are nX p size matrices,then
A(C+ D)=AC + AD (1.12)
(A+B)C=AC+BC (1.13)

and the resulting matrix size on both sides is m X p.

IsAB =BA ?
First both operations AB and BA are only possible if A and B are square

matrices of the same size. Why? If AB exists, number of columns of A has to be

the same as the number of rows of B and if BA exists, number of columns of B has

to be the same as the number of rows of A. Even then in general AB 7 BA .

Example.



