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Preface to the énd Edition

I have been very gratified by the response to the first edition, which has
resulted in it being sold out. This put some pressure on me to come out with
a second edition and now, finally, here it is.

The original text has stayed much the same, the major change being
in the treatment of the hook formula which is now based on the beautiful
Novelli-Pak-Stoyanovskii bijection [NPS 97]. I have also added a chapter on
applications of the material from the first edition. This includes Stanley’s
theory of differential posets [Stn 88, Stn 90] and Fomin’s related ‘concept of
growths [Fom 86, Fom 94, Fom 95|, which extends some of the combinatorics
of S,-representations. Next come a couple of sections showing how groups
acting on posets give rise to interesting representations that can be used to
prove unimodality results [Stn 82]. Finally, we discuss Stanley’s symmetric
function analogue of the chromatic polynomial of a graph [Stn 95, Stn ta].

I would like to thank all the people, too numerous to mention, who pointed
out typos in the first edition. My computer has been severely reprimanded
for making them. Thanks also go to Christian Krattenthaler, Tom Roby,
and Richard Stanley, all of whom read portions of the new material and gave
me their comments. Finally, I would like to give my heartfelt thanks to my
editor at Springer, Ina Lindemann, who has been very supportive and helpful
through various difficult times.

Ann Arbor, Michigan, 2000



Preface to the 1st Edition

In recent years there has been a resurgence of interest in representations
of symmetric groups (as well as other Coxeter groups). This topic can be
approached from three directions: by applying results from the general theory
of group representations, by employing combinatorial techniques, or by using
symmetric functions. The fact that this area is the confluence of several
strains of mathematics makes it an exciting one in which to study and work.
By the same token, it is more difficult to master.

The purpose of this monograph is to bring together, for the first time
under one cover, many of the important results in this field. To make the
work accessible to the widest possible audience, a minimal amount of prior
knowledge is assumed. The only prerequisites are a familiarity with elemen-
tary group theory and linear algebra. All other results about representations,
combinatorics, and symmetric functions are developed as they are needed.
Hence this book could be read by a graduate student or even a very bright
undergraduate. For researchers I have also included topics from recent journa’
articles and even material that has not yet been published.

Chapter 1 is an introduction to group representations, with special empha
sis on the methods of use when working with the symmetric groups. Becaust
of space limitations, many important topics that are not germane to the rest
of the development are not covered. These subjects can be found in any of
the standard texts on representation theory.

In Chapter 2, the results from the previous chapter are applied to the
symmetric group itself, and more highly specialized machinery is developec
to handle this case. I have chosen to take the elegant approach afforded by the
Specht modules rather than working with idempotents in the group algebra.

The third chapter focuses on combinatorics. It starts with the two famous
formulae for the dimensions of the Specht modules: the Frame-Robinson-
Thrall hook formula and the Frobenius-Young determinantal formula. The
centerpiece is the Robinson-Schensted-Knuth algorithm, which allows us tc
describe some of the earlier theorems in purely combinatorial terms. A thor-
ough discussion of Schiitzenberger’s jeu de taquin and related matters is in-
cluded.

Chapter 4 recasts much of the previous work in the language of symmet
ric functions. Schur functions are introduced, first combinatorially as the
generating functions for semistandard tableaux and then in terms of sym:
metric group characters. The chapter concludes with the famous Littlewood-
Richardson and Murnaghan-Nakayama rules.

My debt to several other books will be evident. Much of Chapter 1 is
based on Ledermann’s exquisite text on group characters [Led 77]. Chapte:

vii



viii PREFACE TO THE 1ST EDITION

2 borrows heavily from the monograph of James [Jam 78|, whereas Chapter
4 is inspired by Macdonald’s already classic book [Mac 79). Finally, the third
chapter is a synthesis of material from the research literature.

There are numerous applications of representations of groups, and in par-
ticular of the symmetric group, to other areas. For example, they arise in
physics [Boe 70], probability and statistics [Dia 88|, topological graph the-
ory [Whi 84], and the theory of partially ordered sets [Stn 82]. However, to
keep the length of this text reasonable, I have discussed only the connections
with combinatorial algorithms.

This book grew out of a course that I taught while visiting the Université
du Québec & Montréal during the fall of 1986. I would like to thank !’équipe
de combinatoire for arranging my stay. I also presented this material in a
class here at Michigan State University in the winter and spring of 1990. I
thank my students in both courses for many helpful suggestions (and those
at UQAM for tolerating my bad French). Francesco Brenti, Kathy Dempsey,
Yoav Dvir, Kathy Jankoviak, and Scott Mathison have all pointed out ways
in which the presentation could be improved. I also wish to express my
appreciation of John Kimmel, Marlene Thom, and Linda Loba at Wadsworth
and Brooks/Cole for their help during the preparation of the manuscript.
Because I typeset this document myself, all errors can be blamed on my
computer.

East Lansing, Michigan, 1991
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Chapter 1

Group Representations

We begin our study of the symmetric group by considering its representations.
First, however, we must present some general results about group represen-
tations that will be useful in our special case. Representation theory can be
couched in terms of matrices or in the language of modules. We consider
both approaches and then turn to the associated theory of characters. All
our work will use the complex numbers as the ground field in order to make
life as easy as possible.

We are presenting the material in this chapter so that this book will be
relatively self-contained, although it all can be found in other standard texts.
In particular, our exposition is modeled on the one in Ledermann [Led 77].

1.1 Fundamental Concepts

In this section we introduce some basic terminology and notation. We pay
particular attention to the symmetric group.

Let G be a group written multiplicatively with identity e. Throughout
this work, G is finite unless stated otherwise. We assume that the reader is
familiar with the elementary properties of groups (cosets, Lagrange’s theorem,
etc.) that can be found in any standard text such as Herstein [Her 64].

Our object of study is the symmetric group, S,,, consisting of all bijections
from {1,2,...,n} to itself using composition as the multiplication. The ele-
ments T € S, are called permutations. We multiply permutations from right
to left. (In fact, we compose all functions in this manner.) Thus 7o is the
bijection obtained by first applying o, followed by .

If w is a permutation, then there are three different notations we can use
for this element. Two-line notation is the array

1 2 - n
m(l) w(2) -+ =w(n)’

mT=

1



2 CHAPTER 1. GROUP REPRESENTATIONS

For example, if 7 € S5 is given by
(1) =2, m(2) =3, m(3) =1, w(4) = 4, m(5) = 5,

then its two-line form is

.= 1 2 3 4 5
T2 31 4 5°
Because the top line is fixed, we can drop it to get one-line notation.
Lastly, we can display 7 using cycle notation. Given ¢ € {1,2,...,n}, the
elements of the sequence i, 7 (7), m2(i), m3(4), . .. cannot all be distinct. Taking

the first power p such that 7P(i) = i, we have the cycle
(3, m(3), 72 (), ..., 7P 1(3)).

Equivalently, the cycle (¢,7,k,...,!) means that = sends i to 7, j to k, ...,
and [ back to i. Now pick an element not in the cycle containing i and iterate
this process until all members of {1,2,...,n} have been used. Our example
from the last paragraph becomes

™ =(1,2,3)(4)(5)

in cycle notation. Note that cyclically permuting the elements within a cycle
or reordering the cycles themselves does not change the permutation. Thus

(172'3)(4)(5) =(2,3, 1)(4)(5) = (4)(2’31 l)(5) = (4)(5)(3’ 1, 2)'

A k-cycle, or cycle of length k, is a cycle containing k elements. The
preceding permutation consists of a 3-cycle and two 1-cycles. The cycle type,
or simply the type, of 7 is an expression of the form

(lml)2m2$ e ,nm")1

where my is the number of cycles of length k in 7. The example permutation
has cycle type
(12,20,31,49,59),

A l-cycle of 7 is called a fizedpoint. The numbers 4 and 5 are fixedpoints in
our example. Fixedpoints are usually dropped from the cycle notation if no
confusion will result. An involution is a permutation such that 72 = ¢. It is
easy to see that 7 is an involution if and only if all of 7's cycles have length
lor2.

Another way to give the cycle type is as a partition. A partition of n is a

sequence
A= (Al,’\Z)' “aAl)

where the A; are weakly decreasing and ZLI Ai = n. Thus k is repeated my
times in the partition version of the cycle type of 7. Our example corresponds
to the partition

A=(3,1,1).



