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Preface

This volume covers approximately the amount of point-set topology that a
student whodoes notintend tospecialize in the field should nevertheless know.
This is not a whole lot, and in condensed form would occupy perhaps only a
small booklet. Our aim, however, was not economy of words, but a lively
presentation of theideas involved, an appeal to intuition in both the immediate
and the higher meanings.

[ wish to thank all those who have helped me with useful remarks about
the German edition or the original manuscript, in particular, J. Bingener,
Guy Hirsch and B. Sagraloff. I thank Theodor Brocker for donating his
“Last Chapter on Set-Theory” to my book ; and finally my thanks are due to
Silvio Levy, the translator. Usually, a foreign author is not very competent to

Judge the merits of a translation of his work, but he may at least be allowed
to say: I like it.

Regensburg, May 1983 KLaus JANICH
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Introduction

§1. What Is Point-Set Topology About?

It is sometimes said that a characteristic of modern science is its high—and
ever increasing—level of specialization; every one of us has heard the phrase
“only a handful of specialists . . .”. Now a general statement about so complex
a phenomenon as “modern science” always has the chance of containing a
certain amount of truth, but in the case of the above cliché about specializa-
tion the amount is fairly small. One might rather point to the great and ever
increasing interweaving of formerly separated disciplines as a mark of modern
science. What must be known today by, say, both a number theorist and a
differential geometer, is much more, even relatively speaking, than it was
fifty or a hundred years ago. This interweaving is a result of the fact that
scientific development again and again brings to light hidden analogies
whose further application represents such a great intellectual advance that
the theory based on them very soon permeates all fields involved, connecting
them together. Point-set topology is just such an analogy-based theory,
comprising all that can be said in general about concepts related, though
sometimes very loosely, to “closeness”, “vicinity” and “convergence”.
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Theorems of one theory can be instruments in another. When, for instance,
a differential geometer makes use of the fact that for each point and direction
there is exactly one geodesic (which he does Just about every day), he is

taking advantage of the Existence and Uniqueness Theorem for systems of
second-order ordinary differential equations. On the other hand, the applica-
tion of point-set topology to everyday uses in other fields is based not so
much on deep theorems as on the unifying and simplifying power of its
system of notions and of its felicitous terminology. And this power stems, in
my understanding, from a very specific source, namely the fact that point-set
topology makes accessible to our spatial imagination a great number of prob-
lems which are entirely abstract and non-intuitive to begin with. Many situa-
tions in point-set topology can be visualized in a perfectly adequate way in
usual physical space, even when they do not actually take place there. Our
spatial imagination, which is thus made available for mathematical reasoning
about abstract things, is however a highly developed intellectual ability which
is independent from abstraction and logical thinking; and this strengthening
of our other mathematical talents is indeed the fundamental reason for the
effectiveness and simplicity of topological methods.

§2. Origin and Beginnings

The emergence of fundamental mathematical concepts is almost always a
long and intricate process. To be sure, one can point at a given moment and
say: Here this concept, as understood today, is first defined in a clear-cut and
plain way, from here on it “exists"—but by that time the concept had always
passed through numerous preliminary stages, it was already known in im-
portant special cases, variants of it had been considered and discarded, etc.,
and it is often difficult, and sometimes impossible, to determine which
mathematician supplied the decisive contribution and should be considered
the originator of the concept in question.

In this sense one might say that the system of concepts of point-set topology
“exists” since the appearance of Felix Hausdorfl’s book Grundziige der
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Mengenlehre (Leipzig, 1914). In its seventh chapter, “Point sets in general
spaces”, are defined the most important fundamental concepts of point-set
topology. Maurice Fréchet, in his work “Sur quelques points du calcul
fonctionnel” (Rend. Circ. Mat. Palermo 22), had already come close to this
mark, introducing the concept of metric spaces and attempting to grasp
that of topological spaces as well (by axiomatizing the notion of convergence).
Fréchet was primarily interested in function spaces and can perhaps be seen
as the founder of the function analytic branch of point-set topology.

But the roots of the matter go, of course, deeper than that. Point-set
topology, as so many other branches of mathematics, evolved out of the
revolutionary changes undergone by the concept of geometry during the
nineteenth century. In the beginning of the century the reigning view was the
classical one, according to which geometry was the mathematical theory of
the real physical space that surrounds us, and its axioms were seen as self-
evident elementary facts. By the end of the century mathematicians had
freed themselves from this narrow approach, and it had become clear that
geometry was henceforth to have much wider aims, and should accordingly
be made to work in abstract “spaces”, such as n-dimensional manifolds,
projective spaces, Riemann surfaces, function spaces etc. (Bolyai and
Lobachevski, Riemann, Poincaré “and so on”—I'm not so bold as to try to
delineate here this development process . ..). But now another contribution
of paramount importance to the emergence of point-set topology was to be
added to the rich variety of examples and the general ripeness to work with
abstract spaces: namely, the work of Cantor. The dedication of Hausdorff’s
book reads: “To the creator of set theory, Georg Cantor, in grateful admira-
tion.”

“A topological space is a pair consisting of a set and a set of subsets, such
that...”—it is indeed clear that the concept could never have been grasped
in such generality were it not for the introduction of abstract sets in mathe-
matics, a development which we owe to Cantor. But long before establishing
his transfinite set theory Cantor had contributed to the genesis of point-set
in an entirely diverse way, about which I would like to add something.

Cantor had shown in 1870 that two Fourier series that converge pointwise
to the same limit function have the same coefficients. In 1871 he improved
this theorem by proving that the coefficients have to be the same also when
convergence and equality of the limits hold for all points outside a finite
exception set A < [0, 2n]. In a work of 1872 he now dealt with the problem
of determining for which infinite exception sets uniqueness would still hold.

An infinite subset of [0, 2] must of course have at least one cluster point:

2n
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This is a very “innocent ” example of an infinite subset of [0, 2#]. A somewhat

“wilder” set would be one whose cluster points themselves cluster around
some point:

b —— St #——+ + —
0 2n
211t 2 U 1 1
CP CP CP CP

Cluster point of cluster points

Cantor now showed that if the sequence of subsets of [0, 2n] defined in-
ductively by 4%:= 4 and A4"*!:={xe [0, 2n]|x is a cluster point of 4"}
breaks up after finitely many terms, that is if eventually we have 4* = &,
then uniqueness does hold with 4 as the exception set. In particular a
function that vanishes outside such a set (but not identically in the interval)
cannot be represented by a Fourier series. This result helps to understand
the strange convergence behavior of Fourier series, and the motivation for
Cantor’s investigation stems from classical analysis and ultimately from
physics. But because of it Cantor was led to the discovery of a new type of
subset A < R, which must have been felt to be quite exotic, especially when
the sequence 4, A', A%, ... takes a long time to break off. Now the subsets of
R move to the fore as objects to be studied in themselves, and, what is more,
studied from what we would recognize today as being a topological view-
point. Cantor continued along this path when later, while investigating
general point sets in R and R", he introduced the point-set topological
approach, upon which Hausdorff could now base himself.

*

I do not want to give the impression that Cantor, Fréchet and Hausdorff
were the only mathematicians to take part in the development and clarification
of the fundamental ideas of point-set topology ; but a more detailed treatment
of the subject would be out of the scope of this book. I just wanted to outline,

with a couple of sketchy but vivid lines, the starting point of the theory we are
about to study.



CHAPTER 1
Fundamental Concepts

§1. The Concept of a Topological Space

Definition. A topological space is a pair (X, 0) consisting of a set X and a set
0O of subsets of X (called “open sets ™), such that the following axioms hold:

Axiom 1. Any union of open sets is open.

Axiom 2. The intersection of any two open sets is open.
Axiom 3. ¥ and X are open.

One also says that 0 is the topology of the topological space (X, ©). In
general one drops the topology from the notation and speaks simply of a
topological space X, as we’ll do from now on:

Definition. Let X be a topological space.

(1) A = X is called closed when X \4 is open.

(2) U < X is called a neighborhood of x € X if there is an open set V with
xeVcU.
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(3) Let B = X be any subset. A point x € X is called an interior, exterior
or boundary (or frontier) point of B, respectively, according to whether B,
X\B or neither is a neighborhood of x.

(4) The set B of the interior points of B is called the interior of B.

(5) The set B of the points of X which are not exterior points of B is called
the closure of B.

These are then the basic concepts of point-set topology; and the reader
who is being introduced to them for the first time should at this point work
out a couple of exercises, in order to become familiar with them. Once, when
I was still a student at Tiibingen, I was grading some exercises after a lecture
on these fundamental concepts. In the lecture it had already been established
that a set is open if and only if all of its points are interior, and one exercise
went like this: Show that the set of interior points of a set is always open. In
came a student asking why we had not accepted his reasoning: “The set of
interior points contains only interior points (an indisputable tautology);
hence, the problem is trivial.” There were a couple of other graders present
and we all zealously tried to convince him that in talking about interior
points you have to specify what set they are interior to, but in vain. When he
realized what we wanted, he left, calmly remarking that we were splitting
hairs. What could we answer?

Therefore, should among my readers be a complete newcomer to the
field, I would suggest him to verify right now that the interior of B is the union
of all open sets contained in B, and that the closure of B is the intersection of
all closed sets containing B. And as food for thought during a peaceful after-
noon let me add the following remarks.

Each of the three concepts defined above using open sets, namely, “closed
sets”, “neighborhoods” and “closure”, can in its turn be used to characterize
openness. In fact, a set B = X is open if and only if X\ B is closed, if and only
if B is a neighborhood of each of its points, and if and only if X\ B is equal to
its closure. Thus the system of axioms defining a topological space must be
expressible in terms of each one of these concepts, for instance:

Alternative Definition for Topological Spaces (Axioms for Closed Sets). A
topological space is a pair (X, &) consisting of a set X and a set .o of subsets
of X (called “closed sets "), such that the following axioms hold:

Al. Any intersection of closed sets is closed.
A2. The union of any two closed sets is closed.
A3. X and ¢ are closed.

This new definition is equivalent to the old in that (X, 0) is a topological
space in the sense of the old definition if and only if (X, o) is one in the sense
of the new, where o = {X\ V|V € 0}. Had we given the second definition
first, closedness would have become the primary concept, openness following
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by defining X\ V' to be open if and only if ¥ < X is closed. But the definition
of concepts (2)-(5) would have been left untouched and given rise to the same
system of concepts that we obtained in the beginning. It has become custom-
ary to start with open sets, but the idea of neighborhood is more intuitive,
and indeed it was in terms of it that Hausdorff defined these notions
originally:

Alternative Definition (Axioms for Neighborhood). A topological space is
a pair (X, U) consisting of a set X and a family U = {U } cx of sets U,
of subsets of X (called “neighborhoods of x ™) such that:

N1. Each neighborhood of x contains x, and X is a neighborhood of each
of its points.

N2. If ¥V < X contains a neighborhood of x, then V itself is a neighborhood
of x.

N3. The intersection of any two neighborhoods of x is a neighborhood of x.

N4. Each neighborhood of x contains a neighborhood of x that is also a
neighborhood of each of its points.

One can see that these axioms are a bit more complicated to state than
those for open sets. The characterization of topology by means of the closure
operation, however, is again quite elegant and has its own name:

Alternative Definition (The Kuratowski Closure Axioms). A topological
space is a pair (X, 7) consisting of a set X and a map ~: P(X) - P(X)
from the set of all subsets of X into itself such that:

. F -

C2. Ac Aforall 4 c X.

C3. A= Aforall A c X.

C4. A0B=AuUBforall 4, Be X.

Formulating what exactly the equivalence of all these definitions means

and then proving it is, as we said, left as an exercise to the new reader. We
will stick to our first definition.

§2. Metric Spaces

As we know, a subset of R" is called open in the usual topology when every
point in it is the center of some ball also contained in the set. This definition
can be extended in a natural way if instead of R" we consider a set X for which
the notion of distance is defined ; in particular every such space gives rise to
a topological space. Let’s recall the following



