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Parameter spaces of curves

Joe Harris

Abstract. In this article I will try to survey the state of our knowledge (and the much
greater area of our ignorance) of the geometry of spaces parametrizing curves in

projective space.
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1. Introduction

Robin Hartshorne, in [6], describes the problem of classifying algebraic varieties
as the guiding problem of algebraic geometry. I'd agree, for the most part; and, since
you're currently reading a book entitled “Handbook of Moduli,” presumably you
would too.

But the question remains: what exactly are we classifying? To be specific,
consider the problem of smooth, complete algebraic curves over C. If you ask
mathematicians today to describe the problem of classifying curves, they would
naturally take “curve” to mean “abstract curve,” in which case the answer to the
problem, “classify all smooth complete curves” would consist of two parts. Algebraic

2000 Mathematics Subject Classification. Primary 14Dxx; Secondary 14Dxx.
Key words and phrases. moduli.



2 Parameter spaces of curves

curves are classified first by their sole discrete numerical invariant, the genus, which
can assume any value g € N; and the set of curves of a given genus g has naturally
the structure of an irreducible quasi-projective variety M 4. Beyond this, the problem
of classifying algebraic curves consists of studying the geometry of the variety M,
and of relating properties of curves to the loci in My of curves with that property.

If you had posed the same question to an algebraic geometer of the 19" century,
however, it would of necessity have been interpreted differently. Abstract curves didn’t
exist then (or, depending on your philosophical point of view, they hadn’t been
discovered); the word “curve” would have been taken to mean a subset of projective
space defined by polynomial equations, smooth and irreducible of dimension 1. As
such, a curve had not one but three numerical invariants: its degree d; the dimension
1 of the projective space in which it lay (or, more properly, the dimension of its
span); and of course its genus. The problem of classifying all algebraic curves would
thus amount to two things:

(1) To say for which triples g, r and d there exists a smooth, irreducible and
nondegenerate curve of degree d and genus g in P"; and

(2) To describe, for each such triple (g, 1, d), the geometry of the space 3(; , 4
parametrizing such curves: its irreducible components, their dimensions
and so on.

In this volume, there are many articles that address aspects of the problem
of classification in its modern sense. But the classical version is still very much of
interest, and has many fascinating aspects that are not fully understood: we haven't
answered the first of the questions above; and we know the answer to the second only
in an extremely limited range of cases. The goal of this article is to give a survey of
what we do know about this problem, and likewise to suggest some of the numerous
open problems.

The remainder of this paper will consist of three parts. In Section 2, we'll discuss
the notion of parameter spaces of curves, and compare the two most commonly used
such spaces, primarily the Hilbert scheme and the Kontsevich space. This may in a
sense not be necessary if we're only concerned with smooth, irreducible curves in
projective space, since the Hilbert scheme and the Kontsevich space have a common
open subset parametrizing such curves (and indeed the reader can skip this section
and go directly to the following ones). But for many purposes it’s useful to have
a compactification of the space of curves, and here the Hilbert scheme and the
Kontsevich space differ dramatically, as we'll see.

In Section 3, we'll describe the conjectured answer to the Existence Problem,
the first of the two questions listed above. This actually tells us a lot about curves
of high genus: when g is more than roughly half the maximal possible genus of an
irreducible, nondegenerate curve of degree d in P, in addition to simply saying which
triples (g, 7, d) occur, we learn about the geometry of such curves, and the dimension
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and irreducible components of their families. But for g below this bound, all we can
say is that such curves exist; we can’t say much about the spaces parametrizing them

Finally, in Section 4, we address this issue. We can in fact give a pretty explicit
description of the spaces of curves of low genus, using what we know about the
moduli space of abstract curves and Brill-Noether theory. Again, our knowledge—
even conjectured—drops off as we approach the middle range of possible genera;
we'll try to indicate what are some of the main unresolved questions in this area.

2. Parameter spaces

First of all, some terminology. We propose to call a space whose points corre-
spond naturally to isomorphism classes of varieties or schemes X of a given type a
moduli space; we'll call a space whose points correspond naturally to subschemes
X C Z of a fixed scheme Z (not up to isomorphism) a parameter space. There is not
always a clear line dividing the two—for example, the Kontsevich space parameteriz-
ing stable maps has elements of both—but it does reflect an important duality in
how we view geometric objects. One of the fundamental ideas underlying much
recent progress in the theory of curves, for example, is the fact that whenever we
have a one-parameter family {C; C P"}1ca of curves in projective space, with Cy
smooth for t # to, we have two distinct notions of the “limit” lim,_,;, C; of the
curves Cy: the flat limit, which is a subscheme of P whose geometry can be pretty
much arbitrarily messy; and the stable limit, which is the limit of the abstract curves
C: and has at worst nodes as singularities. (Other articles in this volume discuss
alternative notions of stability, and correspondingly alternative definitions of the
limit of the abstract curves Cy; as for the flat limit, we really don’t have much of an
alternative to that.)

That said, what should we take as the parameter space for curves of degree d
and genus g in P"? There are principally three answers to this question: the Chow
variety, the Hilbert scheme and the Kontsevich space. These agree on the common
open subset }(¢ , ; parametrizing smooth curves (at least if we ignore the scheme
structure on these spaces), but give very different compactifications of 3(j . ;. Now,
the questions we raised earlier—when do there exist such curves C C P, what are
the irreducible components of (3 . ; and what are their dimensions—really don't
depend on the choice of compactification, as long as we restrict our attention to
the closure of 3(3 , ,; in each. But for many other questions it is important to have a
complete parameter space, and so we start with a brief discussion of the properties
of each. Actually, we'll pretty much ignore the Chow variety—in many ways, it has
all the drawbacks of the Hilbert scheme and the Kontsevich space, and none of the
virtues—and focus primarily on the other two.

The following discussion is adapted from a forthcoming book, 3264 and All
That: Intersection Theory in Algebraic Geometry, by the author and David Eisenbud.



4 Parameter spaces of curves

2.1. Hilbert schemes

The Hilbert scheme 3 = Hgr4(P") is a parameter space for subschemes of P*
with Hilbert polynomial p(m) = md — g + 1; in the case of curves (one-dimensional
subschemes) this means all subschemes with fixed degree and arithmetic genus. The
Hilbert scheme has many good properties. For example, there is a useful cohomo-
logical description of its tangent spaces, and, beyond that, a deformation theory that
in some cases can describe its local structure. And, of course, associated to a point
on the Hilbert scheme is all the rich structure of a homogenous ideal in the ring
Klxo, ..., %] and its resolution.

There is one circumstance where the Hilbert scheme is particularly nice: the
Hilbert scheme parametrizing plane curves of degree d (Hilbert polynomial p(m) =
md — (dgl) + 1) is simply the projective space p(“7)-1 of homogeneous forms
of degree d. Beyond that, the geometry of the Hilbert scheme ranges from the
mysterious to the pathological; we'll illustrate with some examples.

Beyond hypersurfaces, the simplest case is the Hilbert scheme containing twisted
cubic curves in P3 (Hilbert polynomial H(m) = 3m + 1.) It has one component
of dimension 12 whose general point corresponds to a twisted cubic curve, but it
has a second component, whose general point corresponds to the union of a plane
cubic C ¢ P? ¢ P? and a point p € P3. Moreover, this second component has
dimension 15 (the choice of plane has 3 degrees of freedom; the cubic inside the
plane 9 more; and the point gives an additional 3.) These two components meet
along the 11-dimensional subscheme of singular plane cubics C with an embedded
point at the singularity, not contained in the plane spanned by C.

2.1.1. Report card for the Hilbert scheme The Hilbert scheme, as a compactifica-
tion of the space of smooth curves, has drawbacks that sometimes make it difficult
to use:

(1) It has extraneous components, often of differing dimensions. We see
this phenomenon already in the case of twisted cubics, above. Of course
we could take just the closure in the Hilbert scheme of the locus of smooth
curves, but we would lose some of the nice properties, like the description
of the tangent space. Thus while it is relatively easy to describe the singular
locus of H, we don’t know how to describe singular locus of 3(° along the
locus where it intersects other components.

In fact, we don't know for curves of higher degree how many such extra-
neous components there are, or their dimensions: for r > 3 and large d the
Hilbert scheme of zero-dimensional subschemes of degree d in P™ will have
an unknown number of extraneous components of unknown dimensions,
and this creates even more extraneous components in the Hilbert schemes
of curves.
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(2) No one knows what's in the closure of the locus of smooth curves. If we
do choose to deal with the closure of the locus of smooth curves rather than
the whole Hilbert scheme—as it seems we must—we face another problem:
except in a few special cases, we can't tell if a given point in the Hilbert
scheme is in this closure. That is, we don’t know how to tell whether a given
singular 1-dimensional scheme C C P" is smoothable.

(3) It has many singularities. Vakil has shown that the singularities of the
Hilbert scheme are, in a precise sense, arbitrarily bad: in[14] he proves that
that the completion of every affine local K-algebra appears (up to adding
variables) as the completion of a local ring on a Hilbert scheme of curves.
But [ want to focus here on a specific source of particularly bad singular
points: points in the Hilbert scheme corresponding to curves that are flat
limits of almost all other curves.

For example, start with an arbitrary smooth curve C C P" of degree d
and genus g, choose a general system of coordinates on P" and apply the
one-parameter group of automorphisms

t® 0 0 .. 0
0t 0..0
A= | 0 0tz 0

0 0 0 ...t%n

with ap < a; <€ -+ < an. Let Cg and C4, be the flat limits of the curves
C¢ = A¢(C) as t — 0 or co—that is, the schemes defined by the initial ideal
with Hilbert polynomial dm — g + 1 with respect to the lexicographical and
reverse lexicographical orderings. The corresponding points [Cp] and [Co]
in the Hilbert scheme will then be in the closure of the orbit of a general
point under the action of PGL,;; so that the local geometry of the Hilbert
scheme at the point [C] necessarily encodes most of the global geometry of
the Hilbert scheme itself, or at least its quotient by PGL,, ;.

2.2. The Kontsevich space

These drawbacks often make it difficult to study the global geometry of the
Hilbert scheme. An alternative is the Kontsevich space; see [3] for a systematic treat-
ment.

The Kontsevich space Mg o(P", d) parametrizes what are called stable maps of
degree d and genus g to P". These are morphisms

f:CoP"

with C a connected curve of arithmetic genus g having only nodes as singularities,
such that the image f. [C] of the fundamental class of C is equal to d times the class of
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alinein A, (P"), and satisfying the one additional condition that the automorphism
group of the map f—that it, automorphisms ¢ of C such that f o ¢ = f—is finite.
(This last condition is automatically satisfied if the map f is finite; it's relevant only
for maps that are constant on an irreducible component of C, and amounts to saying
that any smooth, rational component Cy of C on which f is constant must intersect
the rest of the curve C in at least three points.) Two such maps f : C — P" and
f’: C’ — P are said to be the same if there exists an isomorphism « : C — C’ with
f’oa = f. There’s an analogous notion of a family of stable maps, and the Kontsevich
space mg,o(ﬂ‘“, d) is a coarse moduli space for the functor of families of stable maps.
Note that we're taking the quotient by automorphisms of the domain, but not of the
image, so that mg,o(ﬁ’*, d) shares with the Hilbert scheme Hgm_g+1(P") a common
subset parametrizing smooth curves C C P" of degree d and genus g.

There are naturally variants of this: the space Mg, (PT, d) parametrizes maps
f: C — P" with C a nodal curve having n marked distinct smooth points py, ..., pn €
C. (Here an automorphism of f is an automorphism of C fixing the points p; and
commuting with f; the condition of stability is thus that any smooth, rational
component Cy of C on which f is constant must have at least three distinguished
points, counting both marked points and points of intersection with the rest of the
curve C.) More generally, for any projective variety X and numerical equivalence
class B € Num; (X), we have a space Mg,n(x, f3) parametrizing maps f : C — X with
fundamental class f.[C] = , again with C nodal and f having finite automorphism
group.

The remarkable aspect of the Kontsevich space is simply that it is indeed proper:
in other words, if € C A x P" is a flat family of subschemes of P™ parametrized by
a smooth, one-dimensional base A, and the fiber C, is a smooth curve for t # 0,
then no matter what the singularities of C; there is a unique stable map f: C; — P"
which is the limit of the inclusions v, : C; < P". Note that this limiting stable map
f: Co — P" depends on the family, not just on the scheme Cy; the import of this in
practice is that the Kontsevich space is often locally a blow-up of the Hilbert scheme
along loci of curves with singularities worse than nodes. (This is not to say we have
in general a regular map from the Kontsevich space to the Hilbert scheme; as we'll
see in the examples below, the limiting stable map f : C; — P™ doesn’t determine
the flat limit C, either.) We'll see how this plays out in four relatively simple cases
below.

2.2.1. Plane conics One indication of how useful the Kontsevich space can be is
that, in the case of Mo(P?,2) (that is, plane conics), the Kontsevich space is actually
equal to the space of complete conics:

To begin with, if C € P? is a conic of rank 2 or 3—that is, anything but a double
line—then the inclusion map  : C < P? is a stable map; thus the open set W C P°
of such conics is likewise an open subset of the Kontsevich space My (P?,2).
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But when a family € ¢ A x P? of conics specializes to a double line Co = 2L,
the limiting stable map is a finite, degree 2 map f : C — L, with C either isomorphic
to P!, or two copies of P! meeting at a point. Such a map is characterized, up to
automorphisms of the domain curve, by its branch divisor B C L, a divisor of degree
2. (If B consists of two distinct points, C = P!, while if B = 2p for some p € L, the
curve C will be reducible.) Thus we have a birational morphism

7 Mo(P?,2) = Homsr (P2) =P°

from the Kontsevich space to the Hilbert scheme, with 2-dimensional fibers over the
locus in P° corresponding to double lines.

2.2.2. Conics in space By contrast, there is not a regular map in either direction
between the Hilbert scheme of conics in space and the Kontsevich space My (PP3,2).
Of course there is a common open set: its points correspond to reduced conics—that
is, embedded nodal curves of degree 2. To see that this does not extend to a regular
map in either direction, note first that, as before, if € C A x P? is a family of conics
specializing to a double line Cy, the limiting stable map is a finite, degree 2 cover
f: C — L, and this cover is not determined by the flat limit Cy of the schemes
C¢ C P3. But on the other hand the scheme Cy is again a complete intersection of
a plane and a quadric surface, which is to say it lies in a unique plane H; and this
plane is not determined by the data of the map f.

The relationship in this case between the Hilbert scheme and the Kontsevich
space is what's called in higher-dimensional birational geometry a flip: the Kontsevich
space is obtained from the Hilbert scheme 3 by blowing up the locus of double
lines, and then blowing down the exceptional divisor along another ruling. (The
blow-up of H along the double line locus could be described as the space of pairs
(H; (C,C*)), where H C P? is a plane and (C, C*) a complete conic in H = P2))

2.2.3. Plane cubics Here, we do have a regular map from the Kontsevich space
M, (P2, 3) to the Hilbert scheme H{3, (P?) = P?, and it does some interesting things:
it blows up the locus of triple lines, much as in the example of plane conics, and the
locus of cubics consisting of a double line and a line as well. But it also blows up the
locus of cubics with a cusp, and cubics consisting of a conic and a tangent line, and
these are trickier: the blow-up along the locus of cuspidal cubics, for example, can
be obtained either by three blow-ups with smooth centers, or one blow-up along a
nonreduced scheme supported on this locus.

But what we really want to illustrate here is that the Kontsevich space M (P?, 3)
is not irreducible—in fact, it’s not even 9-dimensional! For example, maps of the
form f : C — P? with C consisting of the union of an elliptic curve E and a copy
of P!, with f mapping P! to a nodal plane cubic Cy and mapping E to a smooth
point of Cy form a 10-dimensional family of stable maps; in fact, these form an
open subset of a second irreducible component of M; (P2, 3). And there’s also a
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third component, whose general member f : C — P? has domain C an elliptic curve,
with two P's attached, with the map f contracting the elliptic curve and sending the
two rational tails to a line and a conic in P2.

2.2.4. Twisted cubics Here the shoe is on the other foot. The Hilbert scheme
H = Hzm1 has, as we saw, a second irreducible component besides the closure Hp
of the locus of actual twisted cubics, and the presence of this component makes it
difficult to work with. For example, it takes quite a bit of analysis to see that H is
smooth, since we have no simple way of describing its tangent space; see [12] for
details. By contrast, the Kontsevich space is irreducible, and has only relatively mild
(finite quotient) singularities.

2.2.5. Report Card for the Kontsevich Space As with the Hilbert scheme, there
are difficulties in using the Kontsevich space:

(1) It has extraneous components. These arise in a completely different way
from the extraneous components of the Hilbert scheme, but they're there.
A typical example of an extraneous component of the Kontsevich space
K/l_g(IF”, d) would consist of maps f : C — P" in which C was the union of a
rational curve Cy = P!, mapping to a rational curve of degree d in P", and
C; an arbitrary curve of genus g meeting Co in one point and on which f
was constant; if the curve C; does not itself admit a nondegenerate map of
degree d to P", this map can’t be smoothed.

So, using the Konsevitch space rather than the Hilbert scheme doesn’t
solve this problem, but it does provide a frequently useful alternative: there
are situations where the Kontsevich space has extraneous components and
the Hilbert scheme not—like the case of plane cubics described above—and
also situations where the reverse is true, such as the case of twisted cubics.

(2) No one knows what's in the closure of the locus of smooth curves. This,
unfortunately, remains an issue with the Kontsevich space. Even in the
case of the space My(P?, d) parametrizing plane curves, where it might be
hoped that the Kontsevich space would provide a better compactification
of the Severi variety than simply taking its closure in the space PN of all
plane curves of degree d, the fact that we don’t know which stable maps are
smoothable represents a real obstacle to its use.

(3) It has points corresponding to highly singular schemes, and these tend
to be in turn highly singular points of My(PT, d). Still true; but in this
respect, at least, it might be said that the Kontsevich space represents an
improvement over the Hilbert scheme: even when the image f(C) of a stable
map f: C — P" is highly singular, the fact that the domain of the map is at
worst nodal makes the deformation theory of the map relatively tractable.
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2.3. Caveat: should we restrict attention to smooth curves, or reduced ones?

Before we leave the topic of the choice of parameter space, we should mention
one other choice. We have declared that we are primarily interested in the space
3+ q Parametrizing smooth, irreducible, nondegenerate curves C C P* of degree
d and genus g. But there is at least one plausible alternative: we could replace the
condition of smoothness with the weaker condition of being simply reduced.

Now, it may seem at first that. as long as we're concerned only with coarse
invariants of the space J(j , ;—enumerating its irreducible components, and their
dimensions—it shouldn’t matter whether we work with 3¢ . ; or the larger open
subset 3| ; . of reduced, irreducible and nondegenerate curves, and for the most
part this is true: the vast majority of components of H; , ; have dense open subsets
lying in 3G . ;. But not always: while you may have to work to locate them, there are
irreducible components of H .. ; whose general point corresponds to a reduced but
singular curve. This can happen for local or global reasons: Hartshorne, in [8], shows
that there exist reduced and irreducible curves C C P? that are not smoothable; and
in the following section we'll see how to construct examples of curves in higher-
dimensional space P" that have just one node as singularity and that are still not

smoothable.

We have chosen here to work with the more restricted class of smooth curves.
But this is largely for reasons of convenience: if we allow singularities, the question
arises of whether to talk in terms of the arithmetic genus or the geometric genus;
and while the former is clearly the more natural choice when we're talking about the
Hilbert scheme of curves of higher genus (as we will in the following Section), the
Brill-Noether-theoretic approach to curves of lower genus that we take in Section 4 is
better suited to working with the geometric genus. The fact is, many of the statements
we make, and the techniques we employ, can be extended to the larger class of
reduced, irreducible and nondegenerate curves, but they're more complicated; and in
the interests of an intelligible exposition we've opted to do everything in the simpler
setting.

3. The existence problem

We start with the first question: when there exists a smooth, irreducible and
nondegenerate curve of degree d and genus g in P". This was answered for r = 3 by
Halphen in the 19" century, though there was a gap in his argument; the correct
proof was given in [4]. A wonderful survey of our knowledge of curves in P? is
given in [7] and [9]. The answer for r = 4 and 5 was given in [13]; and we have
a conjectured answer—or at least an algorithm for determining the answer in any
given case—in general; we'll describe this conjecture below.



