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Preface

This book is intended as a straightforward treatment of the
parts of measure theory necessary for analysis and probability.
The first five or six chapters form an introduction to measure
and integration, while the last three chapters should provide the
reader with some tools that are necessary for study and research
in any of a number of directions. (For instance, one who has
studied Chapters 7 and 9 should be able to go on to interesting
topics in harmonic analysis, without having to pause to learn a
new theory of integration and to reconcile it with the one he
or she already knows.) I hope that the last three chapters will
also prove to be a useful reference.

Chapters 1 through 5 deal with abstract measure and integration
theory, and presuppose only the familiarity with the topology
of Euclidean spaces that a student should acquire in an advanced
calculus course. Lebesgue measure on R (and on R?) is constructed
in Chapter 1 and is used as a basic example thereafter.

Chapter 6, on differentiation, begins with a treatment of changes
of variables in R’ and then gives the basic results on the almost
everywhere differentiation of functions on R (and measures on
R?). The first section of this chapter makes use of the derivative
(as a linear transformation) of a function from R to R? the
necessary definitions and facts are recalled, with appropriate
references. The rest of the chapter has the same prerequisites
as the earlier chapters.

Chapter 7 contains a rather thorough treatment of integration
on locally compact Hausdorff spaces. I hope that the beginner
can learn the basic facts from Sections 2 and 3 without too much
trouble. These sections, together with Section 4 and the first part
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viii | Measure Theory

of Section 6, cover almost everything the typical analyst needs
to know about regular measures. The technical facts needed for
dealing with very large locally compact Hausdorff spaces are
included in Sections 5 and 6.

In Chapter 8 I have tried to collect those parts of the theory
of analytic sets that are of everyday use in analysis and probability.
I hope it will serve both asan introduction and as a useful reference.

Chapter 9 is devoted to integration on locally compact groups.
In addition to a construction and discussion of Haar measure,
I have included a brief introduction to convolution on L'(G) and
on the space of finite signed or complex regular Borel measures
on G. The details are provided for arbitrary locally compact groups,
but in such a way that a reader who is interested only in second
countable groups should find it easy to make the appropriate
omissions.

Chapters 7, 8, and 9 presuppose a little background in general
topology. The necessary facts are reviewed, and so some facility
with arguments involving topological spaces and metric spaces
is actually all that is required. The reader who can work through
Sections 7.1 and 8.1 should have no trouble.

In addition to the main body of the text, there are five appendices.
The first four explain the notation used and contain some elemen-
tary facts from set theory, calculus, and topology; they should
remind the reader of a few things he or she may have forgotten,
and should thereby make the book quite self-contained. The fifth
appendix contains an introduction to the Bochner integral.

Each section ends with some exercises. They are, for the most
part, intended to give the reader practice with the concepts
presented in the text. Some contain examples, additional results,
or alternative proofs, and should provide a bit of perspective.
Only a few of the exercises are used later in the text itself; these
few are provided with hints, as needed, that should make their
solution routine.

I believe that no result in this book is new. Hence the lack
of a bibliographic citation should never be taken as a claim of
originality. The notes at the ends of chapters occasionally tell
where a theorem or proof first appeared; most often, however,
they point the reader to alternative presentations or to sources
of further information.

The system used for cross-references within the book should
be almost self-explanatory. For example, Proposition 1.3.5 and
Exercise 1.3.7 are to be found in Section 3 of Chapter 1, while
C.1 and Theorem C.8 are to be found in Appendix C.
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There are a number of people to whom I am indebted, and
whom I would like to thank. First there are those from whom
I learned integration theory, whether through courses, books,
papers, or conversations; I won’t try to name them, but I thank
them all. I would like to thank R. M. Dudley and W. J. Buckingham,
who read the original manuscript, and J. P. Hajj, who helped
me with the proofreading. These three read the book with much
care and thought, and provided many useful suggestions. (I must,
of course, accept responsibility for ignoring a few of their sugges-
tions and for whatever mistakes remain.) Finally, I thank my wife,
Linda, for typing and providing editorial advice on the manuscript,
for helping with the proofreading, and especially for her en-
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book.
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1. ALGEBRAS AND SIGMA-ALGEBRAS

Let X be an arbitrary set. A collection & of subsets of X is
an algebra on X if

@@ X €.«

(b) for each set A that belongs to & the set A° belongs
to &

(c) for each finite sequence 4, ..., 4, of sets that belong to
& the set U’_, 4, belongs to & and

(d) for each finite sequence 4,, ..., 4, of sets that belong

to 2 the set N7

A, belongs to &

Of course, in conditions (b), (c), and (d) we have required that
& be closed under complementation, under the formation of finite
unions, and under the formation of finite intersections. It is easy
to check that closure under complementation and closure under
the formation of finite unions together imply closure under the
formation of finite intersections (use the fact that N/_, 4, =
(U7, 45)°). Thus we could have defined an algebra using only
conditions (a), (b), and (c). A similar argument shows that we
could have used only conditions (a), (b), and (d).

Again let X be an arbitrary set. A collection & of subsets of
X is a o-algebra* on X if

(@ X €.
(b) for each set A that belongs to & the set 4° belongs
to &7,

*The terms field and o-field are sometimes used in place of algebra and o-algebra.

1



2 | Measure Theory

(¢) for each infinite sequence {4,} of sets that belong to
& the set UT_, 4, belongs to & and

(d) for each infinite sequence {4,} of sets that belong to
& the set N[, A, belongs to &

Thus a o-algebra on X is a family of subsets of X that contains
X and is closed under complementation, under the formation
of countable unions, and under the formation of countable inter-
sections. Note that, as in the case of algebras, we could have
used only conditions (a), (b), and (c), or only conditions (a), (b),
and (d), in our definition.

Each o-algebra on X is an algebra on X since, for example,
the union of the finite sequence 4,, 4,, ..., 4, is the same as
the'union'of the infinite sequence 4., 4, ..., 4, A, A ,....

If X is a set and if & is a family of subsets of X that is closed
under complementation, then X belongs to & if and only if @
belongs to & Thus in the definitions of algebras and o-algebras
given above we can replace condition (a) with the requirement
that § be a member of & Furthermore, if & is a family of
subsets of X that is non-empty, closed under complementation,
and closed under the formation of finite or countable unions,
then & must contain X: if the set 4 belongs to & then X,
since it is the union of 4 and 4°, must also belong to & Thus
in our definitions of algebras and o-algebras we can replace
condition (a) with the requirement that & be non-empty.

In case & is a g-algebra on the set X, it is sometimes convenient
to call a subset of X & -measurable if it belongs to <

We turn to some examples.

1. Let X be a set, and let & be the collection of all subsets
of X. Then & is a o-algebra on X.

2. Let X be a set, and let & = (@, X}. Then & is a o-algebra
on X.

3. Let X be an infinite set, and let & be the collection of all
finite subsets of X. Then & does not contain X and is not closed
under complementation, and so is not an algebra (or a o-algebra)
on X. -

4. Let X be an infinite set, and let & be the collection of all
subsets 4 of X such that either 4 or A° is finite. Then & is
an algebra on X (check this), but is not closed under the formation
of countable unions, and so is not a o-algebra.

5. Let X be an uncountable set, and let .22 be the collection
of all countable (i.e., finite or countably infinite) subsets of X.
Then 2 does not contain X and is not closed under complementa-
tion, and so is not an algebra.
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6. Let X be a set, and let & be the collection of all subsets
A of X such that either 4 or 4°is countable. Then.# is a o-algebra.

7. Let & be the collection of all subsets of R that are unions
of finitely many intervals of the form (a,b], (a,+%), or (—,5].
It is easy to check that each set that belongs to & is the union
of a finite disjoint collection of intervals of the types listed above,
and then to check that & is an algebra on R (the empty set
belongs to ., since it is the union of the empty, and hence finite,
collection of intervals). The algebra & is not a o-algebra; for
example, the bounded open subintervals of R are unions of se-
quences of sets in .2 but do not themselves belong to &

Next we consider ways of constructing o-algebras.

Proposition 1.1.1.

Let X be a set. Then the intersection of an arbitrary non-empty
collection of o-algebras on X is a o-algebra on X.

Proof. Let € be a non-empty collection of o-algebras on X,
and let & be the intersection of the o-algebras that belong to
# It is enough to check that & contains X, is closed under
complementation, and is closed under the formation of countable
unions. The set X belongs to ./, since it belongs to each o-algebra
that belongs to ¥ Now suppose that 4 € & Each o-algebra
that belongs to € contains 4 and so contains 4°; thus 4° belongs
to the intersection &/ of these o-algebras. Finally, suppose that
{A4,} is a sequence of sets that belong to .2 and hence to each
c-algebra in & Then U A4, belongs to each o-algebra in € and
soto m

The reader should note that the union of a family of o-algebras
can fail to be a o-algebra (see Exercise 5).

Proposition 1.1.1 implies the following result, which is a basic
tool for the construction of o-algebras.

Corollary 1.1.2,

Let X be a set, and let # be a family of subsets of X. Then
there is a smallest o-algebra on X that includes %#

Of course, to say that & is the smallest o-algebra on X that
includes # is to say that & is a o-algebra on X that includes
% and that every o-algebra on X that includes # also includes
& This smallest g-algebra on X that includes # is clearly unique;
it is called the o-algebra generated by % and is often denoted
by o(#).
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Proof. Let € be the collection of all o-algebras on X that
include # Then & is non-empty, since it contains the o-algebra
that consists of all subsets of X. The intersection of the g-algebras
that belong to & is, according to Proposition 1.1.1, a o-algebra;
itincludes # and is included in every o-algebra on X that includes

F m

We now use the preceding corollary to define an important
family of o-algebras. The Borel o-algebra on R? is the o-algebra
on R? generated by the collection of open subsets of R and
is denoted by & (R?). The Borel subsets of R? are those that belong
to #(R. In case d = 1, one generally writes # (R) in place
of Z(R").

Proposition 1.1.3.

The o-algebra & (R) of Borel subsets of R is generated by each
of the following collections of sets:

(a) the collection of all closed subsets of R;
(b) the collection of all subintervals of R of the form (—oo, 5] ;
(c) the collection of all subintervals of R of the form (a, 6] .

Proof. Let #,, #,, and &, be the o-algebras generated by the
collections of sets in parts (a), (b), and (c) of the proposition.
We shall show that #(R) D %, O #, D #,, and then that &, D
Z (R); this will establish the proposition. Since & (R) includes
the family of open subsets of R and is closed under complementa-
tion, it includes the family of closed subsets of R; thus it includes
the o-algebra generated by the closed subsets of R, namely 4,.
The sets of the form (—,b] are closed and so belong to %,;
consequently &, C %,. Since

(a; b] = (_wa b] n (—wsa]‘,

each set of the form (g, b] belongs to %,; thus &, C %,. Finally,
note that each open subinterval of R is the union of a sequence
of sets of the form (g, 4], and that each open subset of R is
the union of a sequence of open intervals (see Proposition C.4).
Thus each open subset of R belongs to #,, and so & (R) C
Zy.m

As we proceed, the reader should note the following properties
of the o-algebra Z(R):
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1. It contains virtually* every subset of R that is of interest
in analysis.

2. It is small enough that it can be dealt with in a fairly
constructive manner.

It is largely these properties that explain the importance of
Z (R).

Proposition 1.1.4.

The o-algebra & (RY) of Borel subsets of R? is generated by
each of the following collections of sets:

(a) the collection of all closed subsets of R

(b) the collection of all closed half-spaces in R? that have
the form {(x,,...,x,): x, < b} for some index : and
some b in R;

(¢) the collection of all rectangles in R that have the form
By ... ) arsrxn s hforl = 1, ..., d}.

Proof. This proposition can be proved with essentially the
argument that was used for Proposition 1.1.3, and so most of
the proof is omitted. To see that the o-algebra generated by the
rectangles of part (c) is included in the o-algebra generated by
the half-spaces of part (b), note that each strip that has the form

{(x,) ...y x)): a < x, < b}

for some ¢ is the difference of two of the half-spaces in part
(b), and that each of the rectangles in part (c) is the intersection
of d such strips.m

Let us look in more detail at some of the sets in & (R”). Let
& be the family of all open subsets of R? and let # be the
family of all closed subsets of R?. (Of course ¥ and % dcpcnd
on the dimension 4, and it would have been more precise to
write & (R?) and # (R”).) Let &, be the collection of all intersec-
tions of sequences of sets in g, and let # be the collection
of all unions of sequences of sets in # Sets in &, are often
called G,’s, and sets in #, F_’s. The letters G and F presumably
stand for the German word Gebiet and the French word fermé,
and the letters 0 and 3 for the German words Summc and
Durchschnitt.

*See Chapter 8 for some interesting and useful sets that are not Borel sets.
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Proposition 1.1.5.

Each closed subset of R? is a G,, and each open subset of R”
is an F_.

Proof. Suppose that F is a closed subset of R? We need to
construct a sequence {U,} of open subsets of R such that F
= N, U,. For this define U, by

U,={x € R |lx—y| < 1/n for some yin F}.

(Note that U, is empty if F is empty.) It is clear that each U,
is open and that F C N, U,. The reverse inclusion follows from
the fact that F is closed (note that each point in N, U, is the
limit of a sequence of points in F). Hence each closed subset
of RYis a G,.

If U is open, then U® is closed, and so is a G,. Thus there
is a sequence {U,} of open sets such that U° = N, U,. The
sets U, are then closed, and U = U, U;; hence Uisan F_. u
For an arbitrary family % of sets let %2 be the collection of

all unions of sequences of sets in % and let % be the collection
of all intersections of sequences of sets in & We can iterate
the operations represented by o and 3, obtaining from the class
& theclasses %, ¥, , %,.,, -.., and from the class # the classes
F, Fi Fior ... (Note that ¥ = &_and F =%_. Note also
that &, = %, that £ _ = % , and so on.) It now follows (see
Proposition 1.1.5) that all the inclusions indicated in the following
diagram are valid.

¥c Y CY,CH,C

& & O O
FCH CHE, CH,, C-

It turns out that no two of these classes of sets are equal, and
that there are Borel sets that belong to none of them (see Exercises
7 and 9 in Section 8.2).

A sequence {4,} of sets is called increasing if A, C A,,, holds
for each i, and decreasing if A; D A,,, holds for each i.

Proposition 1.1.6.
Let X be a set, and let & be an algebra on X. Then & is
a o-algebra if either
(a) & is closed under the formation of unions of increasing
sequences of sets, or
(b) & is closed under the formation of intersections of
decreasing sequences of sets.
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Proof. First suppose that condition (a) holds. Since & is an
algebra, we can check that it is a o-algebra by verifying that it
is closed under the formation of countable unions. Suppose that
(4,) is a sequence of sets that belong to & For each 7 let B,
= U7_, A, The sequence {B,} is increasing, and, since & is
an algebra, each B, belongs to . thus assumption (a) implies
that U, B, belongs to & However, U, 4, is equal to U, B,
and so belongs to & Thus & is closed under the formation
of countable unions, and so is a o-algebra.

Now suppose that condition (b) holds. It is enough to check
that condition (a) holds. If {4,} is an increasing sequence of sets
that belong to & then {4} is a decreasing sequence of sets
that belong to . and so condition (b) implies that N A7 belongs
to & Since U, 4, = (N, A)), it follows that U, 4, belongs to
2 Thus condition (a) follows from condition (b), and the proof
is complete. m

EXERCISES

1. Find the o-algebra on R that is generated by the collection
of all one-point subsets of R.

2. Show that #Z (R) is generated by the collection of intervals (—oo, ¢]
for which the end-point ¢ is a rational number.

3. Show that #(R) is generated by the collection of all compact
subsets of R.

4. Show that if & is an algebra of sets, and if U, A4, belongs
to & whenever {4,} is a sequence of disjoint sets in.o/ then
& is a o-algebra.

5. Show by example that the union of a collection of o-algebras
on a set X can fail to be a o-algebra on X. (Hint: There are
examples in which X is a small finite set.)

6. Find an infinite collection of subsets of R that contains R,
is closed under the formation of countable unions, and is closed
under the formation of countable intersections, but is not a
o-algebra.

7. Let % be a collection of subsets of the set X. Show that for
each 4 in o(¥) there is a countable subfamily €, of % such
that A € o (%, ). (Hint: Let & be the union of the o-algebras
o(%), where & ranges over the countable subfamilies of %
and show that & is a o-algebra that satisfies ¥ C & C o(5).)

8. Find all o-algebras on N.

9. (a) Show that Q is an F_, but not a G,, in R. (Hint: Use

the Baire category theorem, Theorem D.37.)
(b) Find a subset of R that is neither an F_ nor a G,.



