r':lﬁuinsaeau

|
t

PEARSON
.

Addison
Wesley

Object—Oriented Analysis and Design

with Applications

iP5 e

(55 ZhR - BHEIAR)

[#£] Grady Booch %

Oiﬁg\-{%ﬁgﬁy UML 1% A Grady Booch 3/t =

DESIGN
WITH APPLICATIONS
AR TSR TR A A ZE »

X EE (Software Development) Z+E Jolt X#% m

=

ﬁ'.\'rvﬂvfe/ﬁ:’z,ﬁ&z?i

R B R & % 3

Object—Oriented Analysis and Design
with Applications

LERE T

(55 ZhR - BHEIAR)

[] Grady Booch

TR R AL WL 4

OBJECT-ORIENTED ANALYSIS AND DESIGN with Applications,2nd edition (ISBN 0-8053-5340-2)
Grady Booch

Copyright © 1994 Addison Wesley Longman, Inc.

Original English Language Edition Published by Addison Wesley Longman, Inc.

All rights reserved.

Reprinting edition published by PEARSON EDUCATION ASIA LTD and CHINA ELECTRIC
POWER PRESS, Copyright © 2003.

A EIR B Pearson Education #Z 8 + H B8) AL ZEH EBE N (. I AT BEX &5
X RSN MEER. &IT.
REHRE PR, AR LMER 7 X8 HIsk PP B A K5 .

A HTHNEA Pearson Education i fh#r%s, TohrEEANERE.
IERMRBFEEEREZICS: BF: 01-2003-3853
R FHEANREFMESEN (AEFEPEEFE. B8 1FITERX MNP EEE X)) #8517,

EBERSE (CIP) #iE

e Rairhveit: §2M/ (B fidrE. —ROMA. —lbgl: PEBHHRME, 2003.10
CJEURRUA B R 4D
ISBN 7-5083-1807-2
[A HLfm A SaE 5 —fIrkit—%3 V. TP312
HEMR A AT CIP B #%5 (2003) & 086082 =

Mot 0 KR IK S B8
1 Foe TR AT SR B R - SEENRRD
% #: (£) Grady Booch
STTHmdE: MR4Er
WRUARAT:) R A
ik JERT=EIEECS BRE4RID: 100044
Hif: (010) 88515918 f& E. (010) 88518169
B Rl ICEBEEHERAF
F A 787X1092 1/16 En iKk: 33.5 o OO 2
+ 5: ISBN 7-5083-1807-2
M K: 2003510 AR E IR 2003410 H B — K ENKI
TE #r: 55.00 G
IEARERE ERENL SR

0

BJECT-ORIENTED
ANALYSIS AND DESIGN
with Applications

SECOND EDITION

Grady Booch

Santa Clara, California

PREFACE

Mankind, under the grace of God, hungers for spiritual peace,
esthetic achievements, family security, justice, and liberty,
none directly satisfied by industrial productivity. But productivity
allows the sharing of the plentiful rather than fighting over
scarcity; it provides time for spiritual, esthetic, and family
matters. It allows society to delegate special skills to
institutions of religion, justice, and the preservation of liberty.

HARLAN MILLS
DPMA and Human Productivity

As computer professionals, we strive to build systems that are useful and that
work; as software engineers, we are faced with the task of creating complex
systems in the presence of scarce computing and human resources. Over the
past few years, object-oriented technology has evolved in diverse segments of
the computer sciences as a means of managing the complexity inherent in
many different kinds of systems. The object model has proven to be a very
powerful and unifying concept.

Changes to the First Edition

Since the publication of the first edition of Object-Oriented Design with
Applications, object-oriented technology has indeed moved into the mainstream
of industrial-strength software development. We have encountered the use of
the object-oriented paradigm throughout the world, for such diverse domains
as the administration of banking transactions; the automation of bowling alleys;
the management of public utilities; and the mapping of the human genome.
Many of the next generation operating systems, database systems, telephony
systems, avionics systems, and multimedia applications are being written using
object-oriented techniques. Indeed, many such projects have chosen to use

vi

Preface

object-oriented technology simply because there appears to be no other way to
economically produce an enduring and resilient programming system.

Over the past several years, hundreds of projects have applied the notation
and process described in Object-Oriented Design with Applications.” Through
our own work with several of these projects, as well as the kind contribution of
many individuals who have taken the time to communicate with us, we have
found ways to improve our method, in terms of better articulating the process,
adding and clarifying certain semantics otherwise missing or difficult to express
in the notation, and simplifying the notation where possible.

During this time, many other methods have also appeared, including the
work of Jacobson, Rumbaugh, Coad and Yourdon, Constantine, Shlaer and
Mellor, Martin and Odell, Wasserman, Goldberg and Rubin, Embley, Wirfs-
Brock, Goldstein and Alger, Henderson-Sellers, Firesmith, and others.
Rumbaugh’s work is particularly interesting, for as he points out, our methods
are more similar than they are different. We have surveyed many of these
methods, interviewed developers and managers who have applied them, and
where possible, tried these methods ourselves. Because we are more interested
in helping projects succeed with object-oriented technology rather than
dogmatically hanging on to practices solely for emotional or historical reasons,
we have tried to incorporate the best from each of these methods in our own
work. We gratefully acknowledge the fundamental and unique contributions
each of these people has made to the field.

It is in the best interests of the software development industry, and object-
oriented technology in particular, that there be standard notations for
development. Therefore, this edition presents a unified notation that, where
possible, eliminates the cosmetic differences between our notation and that of
others, particularly Jacobson’s and Rumbaugh’s. As before, and to encourage
the unrestricted use of the method, this notation is in the public domain.

The goals, audience, and structure of this edition remain the same as for
the first edition. However, there are five major differences between this edition
and the original publication.

First, Chapter 5 has been expanded to provide much more specific detail
about the unified notation. To enhance the reader’s understanding of this
notation, we explicitly distinguish between its fundamental and advanced
elements. In addition, we have given special attention to how the various views
of the notation integrate with one another.

Second, Chapters 6 and 7, dealing with the process and pragmatics of
object-oriented analysis and design, have been greatly expanded. We have also
changed the title of this second edition to reflect the fact that our process does
indeed encompass analysis as well as design.

Third, we have chosen to express all programming examples in the main
text using C++. This language is rapidly becoming the de facto standard in

' Including my own projects. Ultimately, I'm a developer, not just a methodologist. The
first question you should ask any methodologist is if he or she uses their own methods
to develop software.

Preface

many application domains; additionally, most professional developers who are
versed in other object-oriented programming languages can read C++. This is
not to say that we view other languages — such as Smalltalk, CLOS, Ada, or
Eiffel — as less important. The focus of this book is on analysis and design, and
because we need to express concrete examples, we choose to do so in a
reasonably common programming language. Where applicable, we describe the
semantics unique to these other languages and their impact upon the method.
Fourth, this edition introduces several new application examples. Certain
idioms and architectural frameworks have emerged in various application
domains, and these examples take advantage of these practices. For example,
client/server computing provides the basis of a revised application example.
Finally, almost every chapter provides references to and discussion of the
relevant object-oriented technology that has appeared since the first edition.

Goals

This book provides practical guidance on the construction of object-oriented
systems. Its specific goals are:

» To provide a sound understanding of the fundamental concepts of
the object model

+ To facilitate a mastery of the notation and process of object-oriented
analysis and design -

+ To teach the realistic application of object-oriented development
within a variety of problem domains
-\—-

The concepts presented herein all stand on a solid theoretical foundation, but

this is primarily a pragmatic book that addresses the practical needs and
concerns of the software engineering community.

Audience

This book is written for the computer professional as well as for the student.

+ For the practicing software engineer, we show you how to effectively
use object-oriented technology to solve real problems.

« In your role as an analyst or architect, we offer you a path from
requirements to implementation, using object-oriented analysis and
design. We develop your ability to distinguish “good” object-oriented
architectures from “bad” ones, and to trade off alternate designs
when the perversity of the real world intrudes. Perhaps most
important, we offer you fresh approaches to reasoning about
complex systems.

vii

viii

Preface

« For the program manager, we provide insight on how to allocate the
resources of a team of developers, and on how to manage the risks
associated with complex software systems.

« For the tool builder and the tool user, we provide a rigorous
treatment of the notation and process of object-oriented
development as a basis for computer-aided software engineering
(CASE) tools.

- For the student, we provide the instruction necessary for you to
begin acquiring several important skills in the science and art of
developing complex systems.

This book is also suitable for use in undergraduate and graduate courses as
well as in professional seminars and individual study. Because it deals primarily
with a method of software development, it is most appropriate for courses in
software engineering and advanced programming, and as a supplement to
courses involving specific object-oriented programming languages.

Structure

The book is divided into three major sections — Concepts, The Method, and
Applications — with considerable supplemental material woven throughout.

Concepts

The first section examines the inherent complexity of software and the ways in
which complexity manifests itself. We present the object model as a means of
helping us manage this complexity. In detail, we examine the fundamental
elements of the object model: abstraction, encapsulation, rgp\c’lq\larity,‘ hierarchy,
typing, concurrency, and persistence. We address basic questions such as
“What is a class?” and “What is an object?” Because the identification of
meaningful classes and objects is the key task in object-oriented development,
we spend considerable time studying the nature of classification. In particular,
we examine approaches to classification in other disciplines, such as biology,
linguistics, and psychology, then apply these lessons to the problem of
discovering classes and objects in software systems.

The Method

The second section presents a method for the development of complex systems
based on the object model. We first present a graphic notation for object-
oriented analysis and design, followed by its process. We also-examine the
pragmatics of object-oriented development — in particular, its place in the
software development life cycle and its implications for project management.

Preface

Applications

The final section offers a collection of five complete, nontrivial examples
encompassing a diverse selection of problem domains: data acquisition,
application frameworks, client/sérver information management, artificial
intelligence, and command and control. We have chosen these particular
problem domains because they are representative of the kinds of complex
problems faced by the practicing software engineer. It is easy to show how
certain principles apply to simple problems, but because our focus is on
building useful systems for the real world, we are more interested in showing
how the object model scales up to complex applications. Some readers may be
unfamiliar with the problem domains chosen, so we begin each application
with a brief discussion of the fundamental technology involved (such as
database design and blackboard system architecture). The development of
software systems is rarely amenable to cookbook approaches; therefore, we
emphasize the incremental development of applications, guided by a number
of sound principles and well-formed models.

Supplemental Material

A considerable amount of supplemental material is woven throughout the
book. Most chapters have boxes that provide information on important topics,
such as the mechanics of method dispatch in different object-oriented
programming languages. We also include an appendix on object-oriented
programming languages, in which we consider the distinction between object-
based and object-oriented programming languages and the evolution and
essential properties of both categories of languages. For those readers who are
unfamiliar with certain object-oriented programming languages, we provide a
summary of the features of a few common languages, with examples. We also
provide a glossary of common terms and an extensive classified bibliography
that provides references to source material on the object model. Lastly, the end
pages provide a summary of the notation and process of the object-oriented
development method.

Available apart from the text, and new to the second edition, is an
Instructor’s Guide containing suggested exercises, discussion questions, and
projects, which should prove very useful in the classroom. The Instructor’s
Guide with Exercises (ISBN 0-8053-5341-0) has been developed by Mary Beth
Rosson from IBM’s Thomas J. Watson laboratory. Qualified instructors may
receive a free copy from their local sales representatives or by emailing
aw.cse@aw.com. Questions, suggestions, and contributions to the Instructor’s
Guide may be emailed to rosson@watson.ibm.com.

Tools and training that support the Booch method are available from a
variety of sources. For further information, contact Rational at any of the
numbers listed on the last page of this book. Additionally, Addison-Wesley
can provide educational users with software that supports this notation.

ix

Preface

Using this Book

This book may be read from cover to cover or it may be used in less structured
ways. If you are seeking a deep understanding of the underlying concepts of
the object model or the motivation for the principles of object-oriented
development, you should start with Chapter 1 and continue forward in order. If
you are primarily interested in learning the details of the notation and process
of object-oriented analysis and design, start with Chapters 5 and 6; Chapter 7 is
especially useful to managers of projects using this method. If you are most
interested in the practical application of object-oriented technology to a specific
problem domain, select any or all of Chapters 8 through 12.

Acknowledgments

This book is dedicated to my wife, Jan, for her loving support.

Through both the first and second editions, a number of individuals have
shaped my ideas on object-oriented development. For their contributions, I
especially thank Sam Adams, Mike Akroid, Glenn Andert, Sid Bailin, Kent Beck,
Daniel Bobrow, Dick Bolz, Dave Bulman, Dave Bernstein, Kayvan Carun, Dave
Collins, Steve Cook, Damian Conway, Jim Coplien, Brad Cox, Ward
Cunningham, Tom DeMarco, Mike Devlin, Richard Gabriel, William Genemaras,
Adele Goldberg, Ian Graham, Tony Hoare, Jon Hopkins, Michael Jackson,
Ralph Johnson, James Kempf, Norm Kerth, Jordan Kreindler, Doug Lea, Phil
Levy, Barbara Liskov, Cliff Longman, James MacFarlane, Masoud Milani, Harlan
Mills, Robert Murray, Steve Neis, Gene Ouye, Dave Parnas, Bill Riddel, Mary
Beth Rosson, Kenny Rubin, Jim Rumbaugh, Kurt Schmucker, Ed Seidewitz, Dan
Shiffman, Dave Stevenson, Bjarne Stroustrup, Dave Thomas, Mike Vilot, Tony
Wasserman, Peter Wegner, Iseult White, John Williams, Lloyd Williams, Mario
Wolczko, Niklaus Wirth, and Ed Yourdon.

A large part of the pragmatics of this book derives from my involvement
with complex software systems being developed around the world at
companies such as Apple, Alcatel, Andersen Consulting, AT&T, Autotrol, Bell
Northern Research, Boeing, Borland, Computer Sciences Corporation, Contel,
Ericsson, Ferranti, General Electric, GTE, Holland Signaal, Hughes Aircraft
Company, IBM, Lockheed, Martin Marietta, Motorola, NTT, Philips, Rockwell
International, Shell Oil, Symantec, Taligent, and TRW. I have had the
opportunity to interact with literally hundreds of professional software
engineers and their managers, and I thank them all for their help in making this
book relevant to real-world problems. _

A special acknowledgment goes to Rational for their support of my work.
Thanks also to my editor, Dan Joraanstad, for his encouragement during this
project, and to Tony Hall, whose cartoons brighten what would otherwise be
just another stuffy technical book. Finally, thanks to my three cats, Camy,
Annie, and Shadow, who kept me company on many a late night of writing.

ABOUT THE AUTHOR

Grady Booch, Chief Scientist at Rational Soft-
ware Corporation, is recognized throughout the
international software development community
for his pioneering work in object methods and
applications. He is a featured columnist in
Object Magazine and C++ Report, and the
author of several best-selling books on software
engineering and object-oriented development.
Grady Booch also edits and contributes to the
Object-Oriented Software Engineering
Series published by Addison-Wesley.

CONTENTS

Preface v

The First Section: Concepts 1

Chapter 1: Complexity 3

1.1 The Inherent Complexity of Software 3
1.2 The Structure of Complex Systems 9
1.3 Bringing Order to Chaos 16

1.4 On Designing Complex Systems 21

Sidebar: Categories of Analysis and Design Methods 18

Chapter 2: The Object Model 27

2.1 The Evolution of the Object Model 28
2.2 Elements of the Object Model 40
2.3 Applying the Object Model 72

Sidebar: Foundations of the Object Model 36

Xiv Contents

Chapter 3: Classes and Objects 81

3.1 The Nature of an Object 81

3.2 Relationships Among Objects 97

3.3 The Nature of a Class 103

3.4 Relationships Among Classes 106

3.5 The Interplay of Classes and Objects 135
3.6 On Building Quality Classes and Objects 136

Sidebar: Invoking a Method 118

Chapter 4: Classification 145

4.1 The Importance of Proper Classification 146
4.2 ldentifying Classes and Objects 150
4.3 Key Abstractions and Mechanisms 162

Sidebar: A Problem of Classification 151

The Second Section: The Method 169

Chapter 5: The Notation 171

5.1 Elements of the Notation 172
5.2 Class Diagrams 176

5.3 State Transition Diagrams 199
5.4 Object Diagrams 208

5.5 Interaction Diagrams 217

5.6 Module Diagrams 219

5.7 Process Diagrams 223

5.8 Applying the Notation 226

Chapter 6: The Process 229

6.1 First Principles 230
6.2 The Micro Development Process 234
6.3 The Macro Development Process 248

Chapter 7: Pragmatics 267

7.1 Management and Planning 268
7.2 Staffing 271
7.3 Release Management 275

Contents

7.4 Reuse 277

7.5 Quality Assurance and Metrics 278

7.6 Documentation 281

7.7 Tools 282

7.8 Special Topics 285

7.8 The Benefits and Risks of Object-Oriented Development 287

The Third Section: Applications 291

Chapter 8: Data Acquisition:
Weather Monitoring Station 293

8.1 Analysis 294

8.2 Design 312

8.3 Evolution 318
8.4 Maintenance 325

Sidebar: Weather Monitoring Station Requirements 294

Chapter 9: Frameworks:
Foundation Class Library 327

9.1 Analysis 328

9.2 Design 333

9.3 Evolution 365
9.4 Maintenance 372

Sidebar: Foundation Class Library Requirements 329

Chapter 10: Client/Server Computing:
Inventory Tracking 377

10.1 Analysis 378
10.2 Design 400

10.3 Evolution 410
10.4 Maintenance 412

Sidebar: Inventory Tracking System Requirements 379

Chapter 11: Artificial Intelligence:
Cryptanalysis 413

11.1 Analysis 414

xv

Contents

11.2 Design 421
11.3 Evolution 438
11.4 Maintenance 442

Sidebar: Cryptanalysis Requirements 415

Chapter 12: Command and Control:
Traffic Management 445

12.1 Analysis 446
12.2 Design 455

12.3 Evolution 464
12.4 Maintenance 468

Sidebar: Traffic Management System Requirements 448

Afterword 471

Appendix: Object-Oriented Programming
Languages 473

A.1 Concepts 474

A.2 Smalltalk 475

A.3 Object Pascal 479

A.4 C++ 480

A.5 Common Lisp Object System 484

A.6 Ada 486

A.7 Eiffel 487

A.8 Other Object-Oriented Programming Languages 489

Notes 491

Glossary 511

THE FIRST SECTION

ONCEPTS

Sir Isaac Newton secretly admitted to some friends: He
understood how gra_\\/ity behaved, but not how it worked!

LILY TOMLIN
The Search for Signs of Intelligent Life in the Universe

TSN, FELARPDFIEE www. ertongbook. com

