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Preface

For several years, | have been conducting courses in Complex Analysis, Real
Analysis and Functional Analysis in a so-called “bilingual” way. That is, the lessons
are given with Chinese textbooks, but mainly teached in English. The main purpose of
teaching in this way is to improve the undergraduate students’ ability to read and write
English. Using a Chinese textbook in such “bilingual” courses is not, however, useful
for training students’ ability of English-thinking. Consequently, although there are a
number of books on complex analysis in Chinese, in order to meet the requirements of
bilingual teaching, it is necessary to write a textbook on complex analysis in English
for Chinese undergraduate students. This is just the main aim of compiling the present
book.

Roughly, analysis may be characterized as the study of functions and their
various generalizations by using limits. In Mathematical Analysis, or Calculus,
real-valued continuous functions of real variables were mainly discussed. Complex
Analysis, or theory of functions of one complex variable, is devoted to the study of
analytic complex-valued functions of one complex variable. The main tool used in
complex analysis may be the theory of integrals.

Starting with the real number field R, the complex number field C is

introduced in Chapter 1, which is defined as the set of all pairs (a,b) of real

numbers @ and b with the addition and multiplication:

(a,b)+(x,y)=(a+x,b+y), (a,b)(x,y)=(ax—by,ay+bx).
Moreover, the algebraic and geometric structures of the complex number system are
surveyed there.

In Chapter 2, functions of a complex variable are discussed and a theory of
differentiation for them is developed. The main goal of this chapter is to introduce
analytic functions, which play a center role in complex analysis.

In Chapter 3, various elementary functions of a complex variable are considered,
including exponential function exp z, sine function sinz, cosine function cosz,

etc..

In Chapter 4, the theory of integration of complex-valued functions of a complex
variable is studied, which is very important in complex analysis and becomes a
powerful tool for dealing with complex functions.

In Chapter 5, series of complex numbers are considered. With power series,
representations of analytic functions are obtained, which are called Taylor expansions
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and Laurent expansions of analytic functions. Continuity and differentiability of the
sums of power series and Laurent series are studied.

In Chapter 6, residues and poles of analytic functions are introduced in terms of
Laurent expansions of the functions. Zeros of analytic functions are also discussed and
the behavior of a function near isolated singular points is studied as well.

In Chapter 7, some important applications of the theory of residues are discussed,
including evaluation of certain types of definite and improper integrals occurring in
real analysis and applied mathematics.

In Chapter 8, the concept of a conformal mapping is introduced and discussed,
which is a continuation of the geometric interpretation of a function of a complex
variable as a mapping, or transformation introduced in Sections 2.2 and 2.3 of
Chapter 2.

Most of the basic results are stated as propositions, theorems, or corollaries,

followed by examples and exercises illustrating those results.

Some of materials of this book are from the book “Complex Variable and
Applications” written by James Ward Brown and Ruel V. Churchill (7" edition) and
the book “Functions of one Complex Variable” by John B. Conway. My heart-felt
thanks should be extended to the authors of these books.

In the preparations of this book, continual interest and support have been
provided by a number of people, including my colleagues, students and my family
members. The following deserve special thanks: Dr. Zhang Jianhua and Chen Zhengli,
co-authors of this book, without whose cooperation this book could not have been
completed. I would like to thank Professor Wu Jianhua, Professor Ji Guoxing,
Professor Wu Baowei and Professor Liu Xinping for their kindly encouragement.
Especially, I should like to thank Professor Yang Ming for correcting some errors in
English writing.

I am also indebted to the support from the Bilingual Teaching Found of Shaanxi
Normal University.

Any comments and suggestions from the readers will be gratefully appreciated.

Cao Huaixin

College of Mathematics and Information Science,
Shaanxi Normal University, Xi’an 710062, China
January 1, 2013

e-mail: caohx@snnu.edu.cn
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Chapter 1|

Complex Number Field

In this chapter, we survey the algebraic and geometric structure of the complex
number system. We assume various corresponding properties of real numbers to be
known. The positive integer number system, integer number system, rational number

system and real number system are denoted by N,Z,Q and R, respectively.

§1.1. Sums and Products

Complex numbers can be defined as ordered pairs (x, ) of real numbers that are to
be interpreted as points in the complex plane, with rectangular coordinates x and y,
just as real numbers x are thought of as points on the real line. When real numbers
x are displayed as points (x,0) on the real axis, it is clear that the set of complex
numbers includes the real numbers as a subset. Complex numbers of the form (0, y)

correspond to points on the y axis and are called pure imaginary numbers if y # 0 .

The y axis is then referred to as the imaginary axis. The set of all complex numbers
is always denoted by C and called the complex number system.

It is customary to denote a complex number (x,y) by z,so that

z=(x,y). (1.1.1)
The real numbers x and y are called the real and imaginary parts of z ,

respectively; and we write
Rez=x, Imz=y. 1.1.2)

Two complex numbers z, =(x,,y,) and z, =(x,,y,) are equal whenever they
have the same real parts and the same imaginary parts. Thus, the statement z, =z,

means that z, and z, correspond to the same point in the complex plane, or z
plane.
The sum z +z, and the product z,z, of two complex numbers

z, =(x,,»,) and z, =(x,,y,) aredefined as follows:
(X, 20) (x5, 9,) = (% + X5, 3, +35), (1.1.3)

(x5 ¥)(x5, 3,) = (0%, = Y105, Y1 X%, + X, 0,). (1.1.4)
Note that the operations defined by equations (1.1.3) and (1.1.4) become the usual
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operations of addition and multiplication when restricted to the real numbers:

(x,,0) + (x,,0) = (x; +x,,0), (x,,0)(x;,0) = (x,x,,0) .
The complex number system is, therefore, a natural extension of the real number
system.

by
*z=(x,y)

i=(0,1)

o x=(x,0) X

Fig. 1-1

Any complex number z =(x,)) can be written as z = (x,0)+ (0, y). Since
(0,D)(¥,0) =(0,y), we have z =(x,0)+(0,1)(»,0). If we think of a real number
x as the complex number (x,0), that is, we identify a real number x with a
corresponding complex number (x,0), and let i denote the imaginary number
(0,]1) (Fig. 1-1),itis clear that

z=x+iy, (1.1.5)

which is called the rectangular form of the number z . Thus, the complex number
system can be written as
C={(x,y):x,ye R}={x+iy:x,ye R}.
Also, with the convention z2 = zz, z3 = zz? , etc., we find that
i* =(0,1)(0,1) = (-1,0) = —1. (1.1.6)
Thus, the equation z° +1=0 hasaroot z=i in C.
In view of expression (1.1.5), definitions (1.1.3) and (1.1.4) become
(x, +iy)+(xy +iy,) = (%, +x,) +i(y,+y,), (1.1.7)
(x, +iy) )(x, +iy,) = (,x, =y y,) +i(y,x, +x,y,). (1.1.8)
Observe that the right-hand sides of these equations can be obtained by formally
manipulating the terms on the left replacing i 2 by -1 when it occurs.

§1.2. Basic Algebraic Properties
Various properties of addition and multiplication of complex numbers are the same as
for real numbers. We list here the more basic of these algebraic properties and verify
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some of them. Most of the others are verified in the exercises.
The commutative laws:

z\tz,=2z,+2z, zz,=2,z (12.1)
and the associative laws:

(2, +2,)+2, =g +(g;+2), (22)% =2,(2,2;) (1.2.2)
follow easily from the definitions (1.1.3) and (1.1.4) and the fact that real numbers
obey these laws. For example, if z, =(x,;,y,),and z, =(x,,y,), then

2tz =X+ X, 0, t 1) = (X X,y + ) =2, + 2.
Verification of the rest of the above laws, as well as the distributive law:
2z, +z,)=2z,+22,, (1.2.3)
are similar.
According to the commutative law for multiplication, iy = yi. Hence one can
write z =Xx+ yi instead of z = x+iy. Also, because of the associative laws, a

sum z, +z, +2z, and aproduct z,z,z, are well defined without parentheses, as is

the case with real numbers. Especially, for every positive integer # and every
complex number z, we make the following conventions

—_—t ——
nz=z+z+-+-+z and z" =zz---z.
The additive identity 0= (0,0) and the multiplicative identity 1= (1,0) for real
numbers carry over to the entire complex number system. That is,
z+0=z and z:-1=z (1.2.4)
for every complex number z . Furthermore, 0 and 1 are the only complex numbers
with such properties (see Exercise 9).
For each complex number z = (X, y), there is an additive inverse

-z=(-x,-y), (1.2.5)
satisfying the equation z+(—z) = 0. Moreover, there is only one additive inverse
for any given z, since the equation (x,y)+ (#,v)=(0,0) implies that u = —x
and v=-y . Expression (1.2.5) can also be written —z =-—x—1iy without
ambiguity since (Exercise 8)

=) =)y =i(-y).

Additive inverses are used to define subtraction:

2,—2, =z;H(~2,), ¥z,,z,€ C. (1.2.6)
Soif z, =(x,,y,) andz, =(x,,y,), then
2, — 2, ={X, =%, ¥y — Yo ) = —2, )+, ~ 35 )« (1.2.7)

For any nonzero complex number z = (x,y) = x + iy, there is a number z'

such that zz™' =1 , called the multiplicative inverse of z . To find it, we observe that
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xu—yv=1,
(x, y)@,v) = (1,0) ifand only if >

yu+xv=0.
The last system of linear simultaneous equations has a unique solution

x p—
u= > 3 v = 77}}7 .
X" +y” X" +y°

So the multiplicative inverse of z =(x,y)=x+1iy is

X = X . =
g =] sm——y 2y2 = e zyz(z;ﬁO). (1.2.8)
X +y x+y X +y X +y
The inverse z~' is not defined when z =0.1In fact, z =0 means that
x*+y*=0;
and this is not permitted in expression (1.2.8).

From the discussion above, we conclude that the set C of all complex numbers
becomes a field, called the field of complex numbers, or the complex number field.

-1

Exercises

1. Verify that
(@) (N2 -i)—i(1=~2i)=-2i;
b)) (2,-3)(=2,)=(-18);

(c) (3,1)(3,—1)(%,%) =(2,).

2. Show that
(a) Re(iz)=—Imz; (b) Im(iz)=Rez.
3. Showthat (1+z)> =1+2z+z%.
Verify that each of the two numbers z =12%i satisfies the equation
z2-2z+2=0.
5. Prove that multiplication is commutative, as stated in the second of equations

(1.2.1), Sec. 1.2.
6. Verify that

(a) the associative law for addition, stated in the first of equations (1.2.2),
Sec.1.2;
(b) the distributive law (1.2.3), Sec. 1.2.
7. Use the associative law for addition and the distributive law to show that
2(zy +z, +zy) = zz, + 2z, + zz,.
8. Bywriting i=(0,]1) and y=(»,0), show that —(iy) = (—i)y =i(—y).
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9. (a) Show that the complex number 0 = (0,0) is the unique additive identity.
(b) Show that the number 1= (1,0) is the unique multiplicative identity.

10. Solve the equation z°>+z+1=0 for z=(x,y) by writing
(x, ¥)(x, y) +(x, ) +(1,0) = (0,0)
and then solving a pair of simultaneous equationsin x and y.
Suggestion: Use the fact that no real number x satisfies the given equation to
show that y # 0.

Ans. z =[—l i£]

2 3

11. For any nonempty sets E,F < C, define the following sets
EtF={ztw:ze E,we F}, EF={zw:ze E,we F},
E/F={z/w:ze E,we F}(f 0¢ F), wE={wz:ze E}(we C),
wrtE={wxz:ze E}(weC), E"={z":ze E}(ne N).

Find four examples of E that satisfy the following conditions, respectively.
(@) EXE+#2E;
(b) E-E#{0};
(c) EE # E*;
(d E/E#{1}.

12. Showthat C=R+iR, Z=N-N and Q=Z/N.

§1.3. Further Properties

In this section, we mention a number of other algebraic properties of addition and
multiplication of complex numbers that follow from the ones already described in
Sec.1.2. Because such properties continue to be anticipated, the reader can easily pass
to Sec.1.4 without serious disruption.

We begin with the observation that the existence of multiplicative inverses

enables us to show that if a product z,z, is zero, then so is at least one of the factors

z, and z,. For suppose that z,z, =0 and z, #0. The inverse z, ' exists; and,

according to the definition of multiplication, any complex number times zero is zero.
Hence

2 =1z ={z]"2)z =2 (zz,)=2" -0=0,
Thus, if z,z, =0, then either z;, =0 or z, =0; or possibly both z, and z,

equal zero. Another way to state this result is that if two complex numbers z, and
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z, are nonzero, then so is their product Z,z,.
Division by a nonzero complex number is defined as follows:
z .
L=zz"(z,#0). (1.3.1)
2
If z, =(x,,y,)=x,+iy, and z,=(x,,y,)=Xx,+1iy,, then equation (1.3.1)
and expression (1.2.8) in Sec.1.2 tell us that

Z _ (x,, ) X, Yy | _| X%tV WX X)),
=) — 39 3 2 |~ 2 3 ¥ _3 &
Z, Nty ), X, +),; X, +);

Thus,

Z _ 55+ )Y, 422 "X (z, #0) (1.3.2)
: ! ) 3.

23 %+ %+
Although expression (1.3.2) is not easy to remember, it can be obtained by writing
(see Exercise 4)
Ay _ (x, +iy))(x, —iy,)
z,  (x, +ip,)(x, —iy,)
multiplying out the products in the numerator and denominator on the right, and then
using the property
z 4z

(13.3)

- - g4 7 .2
=(z,+2,)z; =zz; +2,2;' =L +-2 (2, 20). (13.4)
24 23 4
The motivation for starting with equation (1.3.3) appears in Sec. 1.5.
There are some expected identities, involving quotients, that follow from the
relation

1 .
—=2z'(z,#0), (1.3.5)
2,
which is equation (1.3.1) when z, =1. Relation (1.3.5) enables us, for example, to
write equation (1.3.1) in the form

1
oy (—J (z, 20). (136)
22 Z
Also, by observing that (see Exercise 3)

(22X s Y=z Nz,z0 y=1 1z, #0),

and hence that (z,z,)” =z, 'z;', one can use relation (1.3.5) to show that

={pz) =58 = (—I—IL}(ZI #0,z, #0). (13.7)

Zy \ 2,

2,2,
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Another useful identity, to be derived in the exercises, is
2.7 z Z
172 S22 (z, #0,z, £0). (1.3.8)
224 Z; N\ 2,

Example. Computations such as the following are now justified:

1 ( 1 ) _ 1 _ 1 5+i _ S#i
2-3i \1+i 2-=-3i))(1+i) 5-i 5+i (GS-i)(5+0)
5+i 5 i 5 1.
e e L §
26 26 26 26 26
Finally, we note that the binomial formula involving real numbers remains valid
with complex numbers. That is, if z, and z, are any two complex numbers, then

M ol g _—
(z,+2,)" = Z(kal z,(n=12,...) (Binomial Formula) (1.3.9)
k=0

where

[n] 1
=—(k=0,1,2,...,n)
k k'(n—k)!

and where it is agreed that 0!= 1. The proof, by mathematical induction, is left as an
exercise.

Exercises
1. Reduce each of these quantities to a real number:

(@ 2, 2700 4 S . (@) 1-i).
2. Show that

3—-4i 5i (1-H2-H3B-i)’
(@) (-Dz=-z; (b) —1—=z(z¢0).
1/z

3. Use the associative and commutative laws for multiplication to show that
(2,2,)(z32,) = (2,2,)(2,2,) -
4. Use identity (1.3.8) in Sec.1.3 to derive the cancellation law:
zZ.Z V4
L ="1(z, 20,z #0).
2z Z
5. Use mathematical induction to verify the binomial formula (1.3.9) in Sec.1.3.
More precisely, note first that the formula is true when » =1. Then, assuming
that it is valid when n =m where m denotes any positive integer, show that
in must hold when n=m+1.
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§1.4. Moduli

It is natural to associate any nonzero complex number z = x +iy with the directed

line segment, or vector, from the origin to the point (x, y) that represents z (Sec.

1.1) in the complex plane. In fact, we often refer to z as the point z or the
vector z . In Fig. 1-2, the number z =x+iy and —2+i are displayed graphically
as both points and radial vectors.

y
(-2,1)
! -2+i
! x+iy >,
=2 0 X
Fig. 1-2

According to the definition of the sum of two complex numbers z, = x, +1y,

and z, =x, +iy,. z; +z, may be obtained vectorially as shown in Fig. 1-3.
y
y ]
] (vayz)
”2;'*:2— /I z, s -
z / Z » (x,.3))
z, 4
0 x 0 zZ,-2, '3 ¥
Fig. 1-3 Fig. 1-4

The difference z, —z, =z, +(—z,) corresponds to the sum of the vectors z,
and —z, (Fig. 1-4).

Although the product of two complex number z, and Zz, is itself a complex
number represented by a vector, that vector lies in the same plane as the vectors for z,

and z,. Evidently, then, this product is neither the scalar nor the vector product used
in ordinary vector analysis.
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The vector interpretation of complex numbers is especially helpful in extending
the concept of absolute values of real numbers to the complex plane. The modulus, or
absolute value, of a complex number z = x +iy is defined as the nonnegative real

number /x” +y° andis denoted by |z |; that is,

|zlz+/x*+ 7. (1.4.1)

Geometrically, the number |z | is the distance between the point (x,y) and the

origin, or the length of the vector representing z . It reduces to the usual absolute
value in the real number system when y =0.

Note that, while the inequality z, <z, is meaningless unless both z, and z,
are real, the statement |z, |<| z, | means that the point z, is closer to the origin
than the point z, is.

Example 1. Since |-3+2i|= V13 and |1+ 4i|= V17, the point —3+ 2
is closer to the origin than 1+ 4i is.

The distance between two points z, =x, +iy, and 2z, =x, +iy, is

|z, =z, |. This is clear from Fig.1-4, since |z, —z, | is the length of the vector
Z, — zZ,; and, by translating the radius vector z, —z,, one can interpret z, —z, as

the directed line segment from the point (x,,y,) to the point (x,,y,) .
Alternatively, it follows from the expression
zy =z, = (X, —x,) +i(y, — »,)
and definition (1.4.1) that
2 2
|z, — 2z, |= \/(xl ~x3) +(W—») .
The complex numbers z corresponding to the points lying on the circle with
center z, and radius R thus satisfy the equation |z—z,|= R, and conversely.

We refer to this set of these points simply as the circle |z — 2z, |= R, denoted by
Clz,:R) -
Example 2. The equation |z —1+43i |=2 represents the circle whose center is
the point z, = (1,—3) and whose radiusis R=2.
It also follows from definition (1.4.1) that the real numbers |z|, Rez =x
and Imz =y are related by the equation
| z|*=(Rez)” +(Imz)>. (1.4.2)
Thus
Rez<|Rez|<|z| and Imz < Imz <] z]. (1.4.3)



