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Preface

Failures and accidents in industries have been repeatedly reported in the course of rapid
development of national economy in China. As the Chinese saying goes, failure is the mother of
success. The failure can advance our engineering knowledge than all the successful machines and
structures in the world. Many theories were actually developed based on the lessons learned from
failures. Fracture mechanics, as an example, were developed after a series of fracture failures in
ships, aircrafts, pressure vessels and so on, which in turn has supported the successful development
of many new products of high reliability. New failures in current extreme engineering will surely
give birth to a new generation of theories. The 2012 International Symposium on Structural
Integrity (ISSI2012) is thus held in Jinan, China during October 31-November 4, 2012 with the
theme From Failure to Better Design, Manufacture and Construction.

This book presents the proceedings of ISSI2012. As the successor of Fracture Mechanics
symposium series (from 2003 to 2009), ISSI2012, continues the tradition of small scale but of high
quality in discussion and exchange. Various sessions are planned for presentations and discussions
on theoretical aspects and practical applications in the area of structural integrity in general.

The symposium (ISSI2012) is co-organized by member organizations of China Structural
Integrity Consortium, including Shandong University, East China University of Science and
Technology, National Engineering Research Center of Pressure Vessel and Pipeline Safety
Technology (Hefei General Machinery Research Institute), MOE Key Laboratory of Pressure
Systems and Safety, Nanjing University of Technology, Zhejiang University, Zhejiang University of
Technology, Zhengzhou University, Changsha University of Science and Technology, Southwest
Jiaotong University, Beihang University and co-sponsored by China Pressure Vessel Institution,
China Materials Institution, National Natural Science Foundation of China, General Administration
of Quality Supervision, Inspection and Quarantine of China, Engineering and Technology Research
Center for Special Equipment Safety of Shandong Province, MOE Key Laboratory of High
Efficiency and Clean Mechanical Manufacture (SDU), MOE Engineering Research Center of
Large-scale Underground Cavern Group (SDU).

On behalf of the organizing committee, we would like to thank the above co-organizers and
co-sponsors who made ISSI2012 possible. We also wish to thank Professor George C. Sih and
Professor Zhengdong Wang for their passion to the symposium and efforts made to ensure the
success of the event.

Weiqiang Wang Shan-Tung Tu
Executive Chairman Symposium Series Chairman
Shandong University East China University of Science & Technology

October, 2012
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Anomalies of monoscale notion of failure in contrast to
multiscale character of failure for physical processes

: b
G. C. Sih *>*
* International Center for Sustainability, Accountability and Eco-Affordability of the Large and Small (ICSAELS ) Lehigh University,
Bethlehem PA 18015, USA

® Key Laboratory of Pressure Systems and Safety, Ministry of Education, East China University of Science and Technology, Shanghai
200237, China

Abstract

The failure problem remains undefined without specifying the multiscaling or multi-dimensional aspects of the system.
Three requirements, dubbed as “where-when-how”, are needed. They refer, respectively, to the spatial (location), temporal
(time) and failure mode (how). The absence of any one of the three can be interpreted as solution generation without a
problem.

Failure is a preconceived notion referring to a threshold, deviating from the norm. Anomalies and ambiguities, however,
can arise when criteria based on the presumption of monoscaling are applied to multiscale systems. Micro-macro effects
when analyzed using the monoscale fracture criterion of energy release rate (ERR) or the equivalent of the path inde-
pendent integral can give negative results violating the First Principle. The surface energy density (SED) can reflect mi-
cro-macro effects simultaneously and remains positive. The invariant property of SED is usable for relating the micro-
structure properties at the different scale ranges to explain the evolution of failure. The sustainable and reliable time to
assure the microstructure stability have not received the attention it deserves, particularly for the manufacturing of ultra
high strength materials. This is also true for high temperature resistance nanomaterials.

Keywords: Failure; Energy release; Surface energy density (SED); Monoscale; Dualscale; Multiscale; Nanomaterial;

Sustainable; Reliable; Stability; Compatible; Surface-volume effects.

1. Introduction

Costly lessons were learned during World War
I when large structures failed suddenly without
warning. Monoscale energy release infers the
coincidence of local and global fracture, tradi-
tionally known as brittle fracture, where fracture
initiation and rapid propagation are assumed to be
one of the same event. That is the stored energy
in the material microstructure dissipates instantly
at the macroscopic scale. Strength elevation was
the design criterion handed down from the 18"
century. Microstructure effects were left out and
monoscale design set foot in the arena of design
that led to one disaster after the other. Conven-
tional high strength materials lower the energy
absorbing capability of the material. This should
be distinguished from the nanomaterials where
energy is absorbed by the nano grain boundaries.
The trade-off between fracture toughness and

*Corresponding author.
E-mail address: gcs@ecust.edu.cn (G. C. Sih).

strength for the conventional alloys was not
known at the time. Special task groups of the
American Society of Testing Materials (ASTM)
were established to find the limits of brittle frac-
ture, referred to as the ASTM Plane Strain Frac-
ture Toughness Value, qualified by a trade-off
relation between the yield strength and the Kc.
Plane stress is a global average that is not rele-
vant to the ASTM treatment of fracture that is
strictly local. The fracture toughness pertains to
local energy release. K¢ refers to a go-no-go sit-
uation such that local and global failure or frac-
ture occurs simultaneously.

The recognition that material microstructure
can affect the macroscopic fracture introduced the
term ductile fracture where the crack can grow
slowly before rapid propagation. The inference is
that the material has increased its toughness. The
fact is that the material microstructure has been
altered to dissipate energy at both the micro and
macro scale, a dual scale proposition. Again the
term elastic-plastic fracture has added to the al-
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ready confused notion of fracture toughness.
Keep in mind that there are distinct difference
between the description of micro and macro
properties. Their connection are still not known.
This period of confusion between the material
science (microscopic) and mechanics (macro-
scopic) lingered on for decades. Reconciliation
via dual scaling of the micro and macro occurred
only in the past 20 years.

In passing, justice will not be done without
mentioning the effects of the atomic structure on
the macroscopic properties of materials. After all,
failure is a multiscale process. There were visions
that the theories of discrete and continuous dislo-
cations could be the mechanisms behind elasto-
plasticity, a shoot first and aim later approach..
Elastic-Plastic Fracture Mechanics (EPFM) were
devised and voted into the codes and standards
for adoption by the nuclear vessel industry. They
replaced the monoscale codes of Linear-Elastic
Fracture Mechanics (LEFM). In essence, nothing
was changed except for some arbitrary parame-
ters to alter the appearance of the energy release
rate or the equivalent path independent integral
that is confined to monoscale application. A con-
vincing message of the inability of dislocation
theory to support elastoplasicity was made by E.
Kroner, a pioneer of dislocation theory in the
1980s [1]. In his later years, he recognized the
importance of multiscaling and segmentation in-
volving the micro, meso and macro scales. To
quote [1]: “The discovery of dislocations led to
an euphoria lasing several decades and to the
hope that theoretical mechanics of elastoplastic
deformation of crystalline solids on the basis of
dislocation theory could be created”. The time
span for recognizing multiscaling in contrast to
monoscaling is nearly 20 years. Moreover, scal-
ing entails not only size but also time. A discus-
sion of the spatial-temporal scaling effects ap-
plied to material science can be found in [2].

The concept of dual scaling in material failure
implicates the interaction of space-time. It is no
less sophisticated than the unification of space
and time at the speed of light as proposed by Al-
bert Einstein. Material science delves on a small-
er size scale and slower time scale. The material
atomic or microstructure behavior is unstable.
The behavior of nanomaterials differs from the
ordinary alloys, starting from their making. Crys-
tal nucleation for polycrystals controls the grain

size in the bulk or volume. The smaller grains
near the boundary are removed from the test
specimens. Nanomaterials pay attention to the
surface or grain interface. Polycrystalline alloys.
concentrate on the bulk and nano crystal materi-
als on the surface or interface. By tradition, sur-
face effects have been treated separately from the
bulk or volume. Interaction of surface energy
density (SED) and volume energy density (VED)
can be found in the open literature for decades
[3.4].

The advent of nanomaterial of the
20™-21%century has showed why monoscale
fracture criteria such as the energy release rate
(EER) and the equivalent path independent inte-
grals G (same as J) are not applicable for dual
scale systems associated with micro-macro
cracking that occurs in creep and fatigue. The
surface energy density (SED) can reflect micro
and macro effects simultaneously and remain
positive, without change of sign. Furthermore,
SED remains invariant and can be used to trans-
fer the results to other scale ranges. This is vital
to understand the sustainability and reliability of
material microstructure that determines the mul-
tiscale aspects of the evolution of failure, without
which no realistic “failure criterion” can be found
and validated.

Recognized only recently is the sustainable
time of maintaining stable nano grain boundaries.
The nanomaterials can degrade to the ordinary
alloys, if the nano grain sizes failed to meet the
sustainable time requirement. Nano grain struc-
ture stability must be qualified and validated in
time. The one-month test results cannot be as-
sumed to remain valid for years. Accelerated
testing cannot be validated [5] by using
mono-dimensional criterion, such as a 90% con-
fidence interval level, a highly controversial pro-
cedure. The dependable life span of a system
cannot be evaluated from a statistical probability
nor an average. A system can fail below the av-
erage. It is the useful life that should be found.

2. Vulnerability of failure prediction

Failure criterion is inherently axiomatic in
character. It is a proposition to anticipate future
events that are subject to changes. The approach
presupposes a condition and find the results by
logical deduction. The risk involved in the axio-
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matic approach consists of uncertainties of
change. Instead, changes can be observe and ex-
trapolation can be made for limited short-time
interval prediction. The latter approach is still not
trivial. The underlying philosophy of I-Ching [6],
expounded in [7], however, should not be over-
looked. Both approaches of prediction are used at
present, but not free from contradiction and vio-
lation of the First Principle. .Frequent misgivings
can be found for analyzing the release energies at
the micro and macro scale while using the mono-
scale failure criteria.

A real crack releases energy at both the macro
and micro scale. The former away from crack and
the latter near the crack tip. The path independent
integral was given as J in 1958 without derivation.
A derivation based on the conservation of energy
was given [9] for a moving macrocrack pointing
out the kinematic and thermodynamic restrictions.
A review could clarify some of anomalies that
arise in the application of path independent inte-
grals referred to elastoplastic, viscoelastic, creep
and nonlinear fracture mechanics.

Path independent integrals for a moving mac-
rocrack can be deduced directly from a corollary
of the First Law of Thermodynamics. Without
going into details, refer to Fig. 1 as a reference of
the physical model of Eq. (1). A verbal statement
of energy balance can be stated as

The rate of work done across C is balanced by
the rate at which energy is stored in A plus the
rate of kinetic energy of the crack and energy
release G of the macrocrack moving at velocity c.

ITuds=—HpUdA HpuudA+cG 1)

Note that is p the density, U the internal en-

ergy, 4, the displacement rates and 7’ the tractions.
Solving for G, it is found that

1 ,0u du " ou
G= |(pU dx, —T: —ds 2
I"””aa) 5 2)

For a non-linear but non-dissipative material, G
reduces to

oy,
G= dex Ta A3)

X

The use of pU=W, with W being the elastic
energy density function, implies no energy
dissipation. For a stationary crack ¢=0, Eq. (3)
reduces to

dex —F, aa" @)

X

which is identical to J in [8] along with the
restrictions:

e Material is non-dissipative
e Crack path is straight
e Energy is released at the macroscale only

The aforementioned restrictions are by no
means apparent unless Eq. (4) were reduced step
by step from Eq. (1). Energy release at the
microscale has been excluded from the derivation
of G. It also turns out that G is a component of
the energy momentum tensor introduced by J. D.
Eshelby to characterize the generalized forces on
the dislocations in elastic solids (1949), 19 years
prior to its presence in fracture mechanics.
Regardless of the nature of application, the
physical limitations stated above are the same.
Refer to the discussions [10] of J. D. Eshelby and
G. R. Irwin in 1989 related to the derivation of
Eq. (4).

The inclusion of micro energy dissipation can
change the sign of Eq. (4), a condition that is
disallowed by First Principle. Examples of this
can be found in [11,12], just to mention a couple
of references.

Path independency is a monoscale concept that
excludes micro effects which are inherent in
creep and fatigue.

A X2 AX2
}—— C = Crack velocity

C;/ﬂp\\w\/n

/ A r ds

/ 9 X ;
/ Xy, X1

\\.\__//‘

ct

Y

-
-

Fig. 1. A constant velocity macrocrack in non-dissipative
material.
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3. Micro-macro energy release incompatible
with mono-scale fracture criterion

Stress-strain solution and failure criterion can
always be contrived without revealing apparent
contradictions. However, when micro-macro
stress strain data are fed into monoscale failure
criterion, obvious violation of the First Principle
can result. This will be demonstrated for the
application of the energy release rate G given by
Eq. (4) for the problem [11] of a crack of length
2a in a piezoelectric material subjected to both
mechanical stress o.. and electric field E. as

shown in Fig. 2. The condition 0 = eE prevails

in the transverse direction, where e stands for the
piezoelectric constant of the material. Poling is
normal to the crack.

3.1. Dual scaling

The problem depicted in Fig. 2 pertains to dual
scaling, where the mechanical stress induce
macro effects and the electric field induces micro
effects. This is equivalent to near crack tip
plasticity induces micro effects, while macro
effects are found away from the crack. The
axiomatic distinction of macro and micro effects
in elastoplasticity, however, is invoked on the
“yield criterion” that remains dubious [1].
Micro-meso-macro effects of multiscaling are not
considered in elastoplasticity as stated in [1].
Hence, elastoplasticity is inherently a monoscale
proposition. Monoscale elastoplastic solution will
not change the sign of the monoscale energy
release rate G. This does not mean that two
wrongs can make a right. The form of G in Eq. (4)
is not valid when both micro and macro cracking
effects are present.

Displayed in Fig. 3 are plots of the normalized

energy release rate (ERR) G/(ac’/m) and en-
ergy density factor (EDF)S/(ac’/m) as a func-
tion of the electric field to stress ratio £_/o_ .The

negative portion of the ERR curve implies that
the crack is absorbing energy instead of releasing
energy. This unphysical result shows that the
ERR criterion cannot be used for systems when
both micro and macro effects are present. The
EDF curve remained positive for all values of the
applied electric field and stress. Curves similar to
those in Fig. 3 for other values of applied electric

or displacement fields and stresses or strains can
be found in [11]. Fig. 4 exhibits a plot of normal-
ized EDF versus ERR. The positive definiteness
of EDF reflects its ability to treat both micro and
macro effects.

The normalized energy density factor remains
positive and reflects the energy released by both
micro and macro effects. It is a multiscale crite-
rion.

RREEE,

o,:eE;’;‘%[%—:E
EHHHE
E,
lllomlll

Fig. 2. Line crack in piezoelectric material.
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Fig. 3. Normalized energy release rate and energy density
factor versus electric field to stress ratio.
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Fig. 4. Normalized energy density factor versus energy
release rate.
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3.2. Scale shifting

The evolution of failure is a gradual process
with the direction of arrow from small to large
involving at least two sizes. Refer to the
measurement standard of scaling of the Systéme
international d'unités or simply the SI system. In
Tables 1 and 2, the standard prefixes for the SI
units of measure will be used with some
modifications for establishing the scale shifting
law [3,4] based on the surface energy density.
The interval between any two successive scales
as shown in Tables 1 and 2 are very coarse.
Smaller intervals may be introduced using meso
scale ranges [13]. Fig. 5 illustrates the scaling of
the volume energy density (VED) W versus the
length 7. The curve suggests a relation between W
and r that would provide a way to transfer the
results from the pico to the macro scale, referred
to as scale shifting. This concept was originated
in the 1970s with reference to the “scale shifting
factor” [14].

The area under the W versus r curve is in fact
the surface energy density (SED) S independent
of any constitutive relations or theories in
continuum mechanics or the geometry of the
system. It applies to problems with or without
discontinuities. Discovery of the W=S/r was
borne [14] when fracture mechanics embarked on
the effects of the microscopic entities. A general
scale shifting law can be stated as Invariant of the
surface energy density S relates the volume
energy densityW and characteristic length v of
any two systems, determined within a coefficient
of non-homogeneity” denoted by m.

Here, the script m should not be confused with
the symbol for meter m. A mathematical
statement of the scale shifting law follows
immediately:

m, Wir, =W.r., 5)

The subscripts j and j+/ can stand, respectively,
for micro and macro, nano and micro or pico and

nano. In Eq. (5),m,,,, stands for the coefficients

of inhomogeneity, the determination of which
will not be discussed here for it will distract the
essence of this work on the anomalies of failure
prediction in the presence of dual- or multi- scal-
ing. A quick glance of the scale ranges estab-
lished by the SI system in Tables 1 and 2 show

that

=== ©)

This implies that the curve in Fig. 6 is a perfect
hyperbola; That is the SI units refer to a “homo-
geneous” system. This is not surprising since
classical treatments rely on homogeneity and
equilibrium. This also explains the wide use of
monoscaling that misrepresents micro effects. In
general, it can be shown that the curve in Fig. 5 is
non-hyperbolically shaped. The determination of
m;;+1 involves non-homogeneous and nonequi-
librium considerations [15,16]. Also, time rate

effects, represented by the dot on W].and WM,

can be important:

M, W0 = Wl 7
Once the solution at the macro scale is known,
the results may be transferred to the micro or
other scales by means of Eq. (5) or (7). The sim-
plified condition in Eq. (6) may be used as a first
approximation. Keep in mind that homogeneity
and equilibrium are the rules rather than the ex-
ception for finding traditional boundary value
problem solutions at the macroscopic scale.

Table 1. Scaling of size or length in meter (m).
Name Macro  Micro  Nano  Pico
Symbol ma-m mi-m  nm pm
Fractor 10°  10°  10° 10"

Table 2. Scaling of volume energy denity in Pascal (Pa).

Name Mega Giga Terra Peta
Symbol MPa GPa TPa TPa
Multiple 10 10° 10" 10"

4

\ Pico:10™m)

K 15
Wp‘.,PPa(10 )
\ Nano:108(m)12
- W,e TPa(10 )

na
\ Micro: 105(m)
W, - GPa (10%)

\ Macro: 103(m\6

era \ Wma:MPa(m )

Tpi

Tmi

Volume energy desnity W/

Characteristic size or length 1

Fig. 5. Volume energy density versus characteristic length.
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4. Reliability and sustainability connected with
failure

When the maintenance costs of an airplane and
nuclear power plant can be several times higher
than the cost of manufacturing, the finger points
to the deficiency in life prediction. A conservative
factor of 5 or more can be assumed over a period
of less than 10 years for the difference between
the cost of manufacturing (construction) and
maintenance. The trade-off between manufactu-
ring cost and that of maintenance should not be
hidden from initial considerations. The seed to
failure is sawn when the trade-off is ignored.

The ultra high strength and light weight
materials used to manufacture air transports will
be used to illustrate the importance of material
microstructure stability for high performance
structures. This takes precedence for air
transports where safety is of primary concern.
The technology of holding tolerances for ultra
high strength materials leaves much to be desired.
Machining and assembling can change the
dimension of the parts and sub-components in
ways that cannot be accurately estimated. Trial
and error during manufacturing can be expensive
and over run the budget. The off-hand remedy
does not cover the long run, where aging and
fatiguing are additional factors that can further
aggravate the situation. This is a new experience
encountered by the manufacturers of Boeing 787
and Airbus A380, before the structure even had a
chance to experience extended service. Mitigation
of over confidence and uncertainties may be
summarized: Learn from failure to understand
failure; anticipate uncertainties and unknowns to
mitigate failure.

However, similar vexing problems may remain
in the long for the single aisle Airbus A340neo
and Boeing 737 MAX that are already taking or-
ders for sale. Uncertainties remain with the deg-
radation of the material microstructure due to
aging and fatiguing. These factors are more pro-
nounced for the new structural materials that
make use of both micro and macro properties. In
the language of fracture mechanics, both crack
initiation and propagation must enter into design
even for structural materials, which are distin-
guished from super-alloys for the engine. In a nut
shell, the decision makers of air transports seem

to have adopted the philosophy that Failure in
manufacturing and potential risk of accidents can
be compensated at the expense of maintenance.
Some of the technical and managerial details re-
lated to manufacturing and failure will be dis-
cussed in an International Conference on Air-
worthiness and Fatigue: 7" ICSAELS Series
Conference, March 25-27, 2013. This event has
been organized jointly by the Chinese Academy
of Sciences, Institute of Mechanics and the Inter-
national Center of Sustainability, Accountability,
and Eco-Affordability for Large and Small (IC-
SAELS) [17]. The foregoing issues related to the
manufacturing of air transports are basically
similar to those associated with chemical and
nuclear power plants where failure and safety are
of primary concern. The demand for higher effi-
ciency has required the use of higher temperature
resistance materials, the reliability of which de-
pends on the stability of the material microstruc-
ture. This in effect calls for the sustainable time
of reliable operation of the system.

A few remarks with reference to failure and
safety are in order. Failure cannot be predicted. It
can be mitigated by anticipating the unexpected.
The world environment, economy and govern-
ment policy change, all of which can influence
the decision on manufacturing and failure. The
consideration of these factors casts a different
view on safety: Safety amounts to anticipating the
uncertainties and unknowns.

Technically speaking, safety is no more than
the commitment to acknowledge the evolution of
failure at the different scales, while the material
microstructure and system components undergo
changes. Philosophically speaking, safety can be
used as a camouflage of the uncontrollable
factors affecting the failure of a system.

Pay more attention to maintenance and learn
by hind sight within the shortest time interval, no
more than one year. Do not wait for 10 or 20
years!
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