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Introduction and Preface

An option gives one the right, but not the obligation, to buy or sell a
security under specified terms. A call option is one that gives the right
to buy, and a put option is one that gives the right to sell the security.
Both types of options will have an exercise price and an exercise time.
In addition, there are two standard conditions under which options oper-
ate: European options can be utilized only at the exercise time, whereas
American options can be utilized at any time up to exercise time. Thus,
for instance, a European call option with exercise price K and exercise
time r gives its holder the right to purchase at time ¢ one share of the
underlying security for the price K, whereas an American call option
gives its holder the right to make the purchase at any time before or at
time 7.

A prerequisite for a strong market in options is a computationally effi-
cient way of evaluating, at least approximately, their worth; this was
accomplished for call options (of either American or European type) by
the famous Black—Scholes formula. The formula assumes that prices
of the underlying security follow a geometric Brownian motion. This
means that if S(y) is the price of the security at time y then, for any
price history up to time y, the ratio of the price at a specified future time
t + y to the price at time y has a lognormal distribution with mean and
variance parameters tu and to 2, respectively. That is,

St +y)
log —S(v)

will be a normal random variable with mean i« and variance ro 2. Black
and Scholes showed, under the assumption that the prices follow a geo-
metric Brownian motion, that there is a single price for a call option that
does not allow an idealized trader — one who can instantaneously make
trades without any transaction costs — to follow a strategy that will re-
sult in a sure profit in all cases. That is, there will be no certain profit
(i.e.. no arbitrage) if and only if the price of the option is as given by
the Black—Scholes formula. In addition, this price depends only on the
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variance parameter o of the geometric Brownian motion (as well as on
the prevailing interest rate, the underlying price of the security, and the
conditions of the option) and not on the parameter ;«. Because the pa-
rameter o is a measure of the volatility of the security, it is often called
the volatility parameter.

A risk-neutral investor is one who values an investment solely through
the expected present value of its return. If such an investor models a secu-
rity by a geometric Brownian motion that turns all investments involving
buying and selling the security into fair bets, then this investor’s valu-
ation of a call option on this security will be precisely as given by the
Black—Scholes formula. For this reason, the Black—Scholes valuation is
often called a risk-neutral valuation.

Our first objective in this book is to derive and explain the Black—
Scholes formula. Its derivation, however, requires some knowledge of
probability, and this is what the first three chapters are concerned with.
Chapter 1 introduces probability and the probability experiment. Ran-
dom variables — numerical quantities whose values are determined by
the outcome of the probability experiment — are discussed, as are the
concepts of the expected value and variance of a random variable. In
Chapter 2 we introduce normal random variables; these are random vari-
ables whose probabilities are determined by a bell-shaped curve. The
central limit theorem is presented in this chapter. This theorem, prob-
ably the most important theoretical result in probability, states that the
sum of a large number of random variables will approximately be a nor-
mal random variable. In Chapter 3 we introduce the geometric Brownian
motion process; we define it, show how it can be obtained as the limit of
simpler processes, and discuss the justification for its use in modeling
security prices.

With the probability necessities behind us, the second part of the text
begins in Chapter 4 with an introduction to the concept of interest rates
and present values. A key concept underlying the Black—Scholes for-
mula is that of arbitrage, which is the subject of Chapter 5. In this chapter
we show how arbitrage can be used to determine prices in a variety of
situations, including the single-period binomial option model. In Chap-
ter 6 we present the arbitrage theorem and use it to find an expression for
the unique nonarbitrage option cost in the multiperiod binomial model.
In Chapter 7 we use the results of Chapter 6, along with the approxima-
tions of geometric Brownian motion presented in Chapter 4, to obtain a
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simple derivation of the Black—Scholes equation for pricing call options.
Properties of the resultant option cost as a function of its parameters are
derived, as is the delta hedging replication strategy. Additional results
on options are presented in Chapter 8, where we derive option prices
for dividend-paying securities; show how to utilize a multiperiod bino-
mial model to determine an approximation of the risk-neutral price of an
American put option; determine no-arbitrage costs when the security’s
price follows a model that superimposes random jumps on a geomet-
ric Brownian motion; and present different estimators of the volatility
parameter.

In Chapter 9 we note that, in many situations, arbitrage considerations
do not result in a unique cost. We show the importance in such cases
of the investor’s utility function as well as his or her estimates of the
probabilities of the possible outcomes of the investment. The concepts
of mean variance analysis, value and conditional value at risk, and the
capital assets pricing model are introduced.

In Chapter 10 we introduce stochastic order relations. These relations
can be useful in determining which of a class of investments is best with-
out completely specifying the investor’s utility function. For instance,
if the return from one investment is greater than the return from another
investment in the sense of first-order stochastic dominance, then the first
investment is to be preferred for any increasing utility function; whereas
if the first return is greater in the sense of second-order stochastic dom-
inance, then the first investment is to be preferred as long as the utility
function is concave and increasing.

In Chapters 11 and 12 we study some optimization models in finance.
In Chapter 13 we introduce some nonstandard, or ‘“exotic,” options
such as barrier, Asian, and lookback options. We explain how to use
Monte Carlo simulation, implementing variance reduction techniques,
to efficiently determine their geometric Brownian motion risk-neutral
valuations.

The Black—Scholes formula is useful even if one has doubts about the
validity of the underlying geometric Brownian model. For as long as
one accepts that this model is at least approximately valid, its use gives
one an idea about the appropriate price of the option. Thus, if the ac-
tual trading option price is below the formula price then it would seem
that the option is underpriced in relation to the security itself, thus lead-
ing one to consider a strategy of buying options and selling the security
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(with the reverse being suggested when the trading option price is above
the formula price). In Chapter 14 we show that real data cannot aways
be fit by a geometric Brownian motion model, and that more general
models may need to be considered. In the case of commodity prices,
there is a strong belief by many traders in the concept of mean price re-
version: that the market prices of certain commodities have tendencies
to revert to fixed values. In Chapter 15 we present a model, more general
than geometric Brownian motion, that can be used to model the price
flow of such a commodity.

New to This Edition

Whereas the third edition contains changes in almost all previous chap-
ters, the major changes in the new edition are as follows.

» Chapter 3 on Brownian Motion and Geometric Brownian Motion has
been completely rewritten. Among other things the new chapter gives
an elementary derivation of the distribution of the maximum variable
of a Brownian motion process with drift, as well as an elementary
proof of the Cameron—Martin theorem.

e Section 7.5.2 has been reworked, clarifying the argument leading to a
simple derivation of the partial derivatives of the Black—Scholes call
option pricing formula.

e Section 7.6 on European Put Options is new. It presents monotonicity

and convexity results concerning the risk-neutral price of a European

put option.

Chapter 10 on Stochastic Order Relations is new. This chapter presents

first- and second-order stochastic dominance, as well as likelihood ra-

tio orderings. Among other things, it is shown (in Section 10.5.1) that

a normal random variable decreases, in the second-order stochastic

dominance sense, as its variance increases.

* The old Chapter 10 is now Chapter 11.

* Chapter 12 on Stochastic Dynamic Programming is new.

* The old Chapter 11 is now Chapter 13. New within this chapter is Sec-
tion 13.9, which presents continuous time approximations of barrier
and lookback options.

¢ The old Chapter 12 is now Chapter 14.

» The old Chapter 13 is now Chapter 15.
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One technical point that should be mentioned is that we use the nota-
tion log(x) to represent the natural logarithm of x. That is, the logarithm
has base e, where e is defined by

e = lim(1+1/a)"
n— oo
and is approximately given by 2.71828 ....

We would like to thank Professors Ilan Adler and Shmuel Oren for some
enlightening conversations, Mr. Kyle Lin for his many useful comments,
and Mr. Nahoya Takezawa for his general comments and for doing the
numerical work needed in the final chapters. We would also like to thank
Professors Anthony Quas, Daniel Naiman, and Agostino Capponi for
helpful comments concerning the previous edition.
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1. Probability

1.1 Probabilities and Events

Consider an experiment and let S, called the sample space, be the set
of all possible outcomes of the experiment. If there are m possible out-
comes of the experiment then we will generally number them 1 through
m, and so S = {1, 2, ..., m}. However, when dealing with specific ex-
amples, we will usually give more descriptive names to the outcomes.

Example 1.1a (i) Let the experiment consist of flipping a coin, and let
the outcome be the side that lands face up. Thus, the sample space of
this experiment is

S = {h,t},

where the outcome is 4 if the coin shows heads and ¢ if it shows tails.

(ii) If the experiment consists of rolling a pair of dice — with the out-
come being the pair (i, j), where i is the value that appears on the first
die and j the value on the second — then the sample space consists of
the following 36 outcomes:

(1, 1), (1,2), (1,3), (1,4), (1,5), (1,6),
(2, 1), (2.2), (2,3), (2.4), (2,5), (2,6),
(3, 1), (3,2), (3,3), (3,4), (3,5), (3,6),
(4,1), (4,2), 4,3), (4.4), 4,5), 4,6),
(5, 1), (5.2), (5,3), (5,4), (5,5), (5,6),
(6, 1), (6.2), (6,3), (6,4), (6,5), (6,6).

(iii) If the experiment consists of a race of r horses numbered 1, 2, 3,
..., r, and the outcome is the order of finish of these horses, then the
sample space is

S = {all orderings of the numbers 1, 2, 3, ..., r}.
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For instance, if r = 4 then the outcome is (1, 4, 2, 3) if the number 1
horse comes in first, number 4 comes in second, number 2 comes in
third, and number 3 comes in fourth. ]

Consider once again an experiment with the sample space S = {1, 2, ...
m}. We will now suppose that there are numbers p,. ..., p,, with

and such that p; is the probability that i is the outcome of the experi-
ment.

Example 1.1b In Example 1.1a(1), the coin is said to be fair or un-
biased if it is equally likely to land on heads as on tails. Thus. for a fair
coin we would have that

pr=pr=1/2.
If the coin were biased and heads were twice as likely to appear as tails,
then we would have
pn=2/3, pr=1/3.
If an unbiased pair of dice were rolled in Example 1.1a(ii), then all pos-
sible outcomes would be equally likely and so
pi.jy=1/36. 1 <i<6,1<j<6.
If » = 3 in Example 1.1a(iii), then we suppose that we are given the six
nonnegative numbers that sum to 1:
P1,2.3, P1.3.2, P2.1.3. P23.1. P31.2, P32,

where p; ; i represents the probability that horse i comes in first, horse
7 second, and horse k third. O

Any set of possible outcomes of the experiment is called an event. That
is, an event is a subset of S, the set of all possible outcomes. For any
event A, we say that A occurs whenever the outcome of the experiment
is a point in A. If we let P(A) denote the probability that event A oc-
curs, then we can determine it by using the equation

P(A)=Zp,—. (1.1)

ieA
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Note that this implies
PS)=) p=1 (1.2)

In words, the probability that the outcome of the experiment is in the
sample space is equal to 1 — which, since S consists of all possible out-
comes of the experiment, is the desired result.

Example 1.1c Suppose the experiment consists of rolling a pair of fair
dice. If A is the event that the sum of the dice is equal to 7, then

A ={(,6),(2,5),(3,4), 4, 3), (5,2), (6, 1)}
and
P(A) =6/36 = 1/6.

If we let B be the event that the sum is 8, then

P(B) = p@2.6) + P3.5) + Pasy + P53y + pe2y = 5/36.

If, in a horse race between three horses, we let A denote the event that
horse number 1 wins, then A = {(1, 2, 3), (1, 3, 2)} and

P(A) = p123+ pi.32. (]

For any event A, we let A°, called the complement of A, be the event
containing all those outcomes in § that are not in A. That is, A° occurs
if and only if A does not. Since

lzzpi
ZZPi+ZPi

ieA ieac
= P(A) + P(A%),

we see that
P(A°) =1— P(A). (1.3)

That is, the probability that the outcome is not in A is 1 minus the prob-
ability that it is in A. The complement of the sample space S is the null
event ¥, which contains no outcomes. Since ¥ = S¢, we obtain from
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Equations (1.2) and (1.3) that
PW) =0.

For any events A and B we define AU B, called the union of A and B, as
the event consisting of all outcomes that are in A, or in B, or in both A
and B. Also, we define their intersection AB (sometimes written AN B)
as the event consisting of all outcomes that are both in A and in B.

Example 1.1d Let the experiment consist of rolling a pair of dice. If
A is the event that the sum is 10 and B is the event that both dice land
on even numbers greater than 3, then

A =1{(4,6),(5,5), (6,4)}, B =1{(4.4),(4,6),(6,4), (6,6)}.
Therefore,
AUB =1{(4,4),(4,6),(5,5),(6,4), (6,06)},
AB = {(4,6), (6, 4)}. O

For any events A and B, we can write

P(AUB)= Y pi.

i€ AUB
P(A) =) pi.

€A
P(B) =Y pi.

1=

Since every outcome in both A and B is counted twice in P(A) + P(B)
and only once in P(A U B), we obtain the following result, often called
the addition theorem of probability.

Proposition 1.1.1
P(AUB) = P(A)+ P(B) — P(AB).
Thus, the probability that the outcome of the experiment is either in A

or in B equals the probability that it is in A, plus the probability that it
is in B, minus the probability that it is in both A and B.
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Example 1.1e Suppose the probabilities that the Dow-Jones stock in-
dex increases today is .54, that it increases tomorrow is .54, and that it
increases both days is .28. What is the probability that it does not in-
crease on either day?

Solution. Let A be the event that the index increases today, and let B
be the event that it increases tomorrow. Then the probability that it in-
creases on at least one of these days is

P(AUB) = P(A)+ P(B) — P(AB)

= .54 + .54 — .28 = .80.

Therefore, the probability that it increases on neither day is 1 — .80 =
.20. O

It AB = (), we say that A and B are mutually exclusive or disjoint.
That is, events are mutually exclusive if they cannot both occur. Since
P@) = 0, it follows from Proposition 1.1.1 that, when A and B are mu-
tually exclusive,

P(AU B) = P(A) 4+ P(B).

1.2 Conditional Probability

Suppose that each of two teams is to produce an item, and that the two
items produced will be rated as either acceptable or unacceptable. The
sample space of this experiment will then consist of the following four
outcomes:

S ={(a.a),(a,u), (u,a), (u, u)},

where (a, 1) means, for instance, that the first team produced an accept-
able item and the second team an unacceptable one. Suppose that the
probabilities of these outcomes are as follows:

P(a,a) = .54,
P(a,u) = .28,
P(u,a) = .14,

P(u, u) = .04.



