PEARSON

F)rn

(=}

1%
2
g

&6 0006

R

(%) Y. Daniel Liang =

o] 0 47 4 B TE 4 = KM S K%

1
% Introduction to
M Programming
3 with
ki
THIRD EDITION
iy
BT B

China Machine Press

Y. Daniel Liang

CH+Reitil

(3&3CHR - 583k)

nlroitclios 1o

& ?)‘"ﬂyf/'a///,//r_/}zy (gt G677+ (Third Edition)
Iz &

Introduction to

> ;
Programming

Y. Daniel Liang

(%) Y. Daniel Liang =

T 98 30 B T4 22 KM ST K

EHERRE (CIP) ¥iE

CHIRIFIRT (JECHR - 830k / (¥) 25 (Liang, Y.D.) % —Jb3t. WU T HkREE, 20135
(2 B RRAS D)
45 &3¢ Introduction to Programming with C++, Third Edition

ISBN 978-7-111-42505-2
LCeee IL 2. L CRFF—RFIEF—3E3 IV. TP312
o [i A P S 1 CIPHc i i (2013) 451003762

AR - 25

HR ARG AT R SR

ABEAME T T REAEIFF 5T
EBFNEIZS: EF. 01-2013-2093

Original edition, entitled; Introduction to Programming with C++, Third Edition, 9780133252811 by Y.
Daniel Liang, published by Pearson Education, Inc, publishing as Pearson, Copyright © 2014, 2010, 2007.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording or by any information storage retrieval system,
without permission from Pearson Education, Inc.

English reprint edition published by PEARSON EDUCATION ASIA LTD., and CHINA MACHINE PRESS,
Copyright © 2013. ' ,

This edition is manufactured in the People’s Republic of China, and is authorized for sale and distribution in
the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and Macau SAR).

A AS Y CREENAR HiPearson Education Asia Ltd JZRUHLAE Toll RS 5 AR . A2 HUR % {5 1 1
AL, AL A Bl Az '

(PR rh e N RGBS (A b B A i, L 1R B AT B X v [& IS Hb 1K) 88 % 17

A5 BTN 47 Pearson Education (KR %0e HHIRER]) SOERIPObRE:, Tohn% & A aitE.

HUbR Tk ttiAReE s PSR B HERE22S BBs4ifd 100037)
oUfEaue: RHRE

AU 5 3 PR E R A PR) EfD R

20134£:6 H 55 1R 5 1 2 ENRI

170mm X 242mm - 442515k

i35 ISBN 978-7-111-42505-2

o e 79.007C

LA, ef SN, B, A, diddi iRk
EMRAL: (010) 88378991 88361066 HAE RS (010) 88379604
Bk (010) 68326294 88379649 68995259 ik {3 fi: hzjsi@hzbook.com

HhRE 8IS

NEE UM, BEi- KBRS IE P R ARG, S EREERFHERN
BN GUREE T MRS hIERXFNES, BEXREEREEERRBIATEZER L
REH, MGIRE, EfLmHEED, XEMN™LFSHEFEREREZRES, RGP
B #if 2 % WAL - R S R ECE R AT 2k, Bk AR 2P EE, AR
THRITER, TR TEROEE, BEEERNE, XaFEEEME, KMEHAZE
4 A WA I GR .

LA, ELHREBMABNMEST, RENGETILERRE, 3EULALRITERKH &
), XA HRERT RS EEEYLE, hEME T hEMVRIRERE RIS LT
BEERE, ARERGEBEARERAZENIRT, XEFREERELEBFEERED
JLHERBREME RS REM A T2 EREEZL. Bk, 5IHE—REIMUTE B 53
FEHFENERESFROMEDER, heSttRER. BiREENIR —HAENL
oz,

L Tk i e E AR RE NS “HREARFTIRS. B 1998 F£FH4E, i
PP LR AURCME T, BiEEIMEFEH L. 23 ZEMAWMS 5, A5 Pearson,
McGraw-Hill, John Wiley & Sons, Elsevier, Cambridge % {5 3% & tH ik 28 "1 850 T R4/
EBlEFXZ, MBI A % E Fh ok h 8L (Digital Design: Principles and Practices, 4E
(it FE S5, HE% 45k)) (John FWakerly %), (Fundamentals of Digital Logic
with Verilog Design (%5548 3£ il 55 Verilog i%it)) (Stephen Brown). (Electromagnetic
Field Theory Fundamentals, 2E (M iy 5l ik, JR45% 2 it)) (Bhag Singh Guru),
{Fundamentals of Electric Circuits, SE(HLIEER, JBE SR, TS 5 i)Y (Charles K.
Alexander %) . (Digital Fundamentals: A Systems Approach (53Rl . Z%i}#:)) (Thomas
L. Floyd %) . (Introductory Circuit Analysis J12E (HLE% 20 47 SR, R 120, AFHECEER))
(Robert L.Boylestad %) . (Foundations of MEMS , 2E (f4HLH A4 3RE (% 2 5%)) (Chang
Liu %) FRMAKMSHEF, L)L ‘BRI EM R HEeRbm, figds
3, MREEE.

PORAITEE . MMM, —REE . MHRNEE. FHanmiE, XEREERN
EHA TREMRIE. BEE B BT LRI AN 2 & MM B ERRL, 8F
F5- %5 S e, B S RO T SR A B BRSSP A— AR B, I EFRRRAERE, Mk
PRV W ELTRNARX — &Rk B R BB, 1LF L SO BIRFNI% & S AT TIER
HEIEA THRIE, RINMBKRR ST :

£ ZFM YL . www.hzbook.com

B8 FHB{4 . hzjsj@hzbook.com =

BEFE@iE. (010) 88379604 HZ Books

BRI, F T EIKE G 7 A b 1S 84H
BB 4RH3: 100037 L - E T L I

This book is dedicated to my current and former C++
students. You have inspired and helped me
to continue to improve this book.

To Samantha, Michael, and Michelle

DEAR READER,

Many of you have provided feedback on previous editions of Introduction to Programming
with C++, and your comments and suggestions have greatly improved the book. This edition
has been substantially enhanced in presentation, organization, examples, exercises, and
supplements—including the following:

B Reorganized sections and chapters present subjects in a logical order
B Many new interesting examples and exercises stimulate inferest

® Introduction of the string type in Chapter 4 enables students to write programs using
strings early

B Key Points at the beginning of each section highlight important concepts and materials

B Check Points at the end of each section verify the student’s understanding of the material
covered

Please visit www.cs.armstrong.edu/liang/cpp3e/correlation.html for a complete list of new
features as well as correlations to the previous edition.

This book teaches programming using a problem-driven method that focuses on problem
solving rather than syntax. We make introductory programming interesting by using thought
provoking problems in a broad context. The central thread of early chapters is on problem
solving. Appropriate syntax and libraries are introduced to enable readers to write programs to
solve problems. To support the teaching of programming in a problem-driven way, the book
provides a wide variety of problems at various levels of difficulty to motivate students. To
appeal to students in all majors, the problems cover many application areas, including math,
science, business, finance, gaming, and animation.

The book focuses on fundamentals first by introducing basic programming concepts and
techniques before designing custom classes. The fundamental concepts and techniques of
loops, functions, and arrays are the basis for programming. Building this strong foundation
prepares students to learn object-oriented programming and advanced C++ programming.

This book teaches C++. The fundamentals of problem solving and programming are the
same regardless of which programming language you use. You can learn programming using
any high-level programming language such as Python, Java, C++, or C#. Once you know how
to program in one language, it is easy to pick up other languages, because the basic techniques
for writing programs are the same.

The best way to teach programming is by example, and the only way to learn programming
is by doing. Basic concepts are explained by example and many exercises with various levels
of difficulty are provided for students to practice. In our programming courses, we assign
programming exercises after each lecture.

Our goal is to produce a text that teaches problem solving and programming in a broad con-
text using a wide variety of interesting examples. If you have any comments or suggestions for
improving this book, please email me.

Sincerely,

Y. Daniel Liang

y.daniel.liang @gmail.com
www.cs.armstrong.edu/liang
www.pearsonhighered.com/liang

what’s new?

problem driven

fundamentals first

examples and exercises

PREFACE

complete revision

new examples and exercises

Key Points
Check Points

VideoNotes

string objects early

simple 10 early

functions in one chapter

common error sections

simplified examples

algorithm efficiency and
techniques

C4+11

What’s New in This Edition?

This third edition substantially improves Introduction to Programming with C++, Second
Edition. The major improvements are as follows:

A complete revision to enhance clarity, presentation, content, examples, and exercises
New examples and exercises to motivate and stimulate student interest in programming
Key Points that highlight the important concepts covered in each section

Check Points that provide review questions to help students track their learning progress
and evaluate their knowledge about a major concept or example

® New VideoNotes that provide short video tutorials designed to reinforce the key concepts

- Introduction of string objects in Chapter 4 to enable strings to be used in the early part

of the book
Introduction of simple input and output in Chapter 4 to enable students to write programs
using files early

Inclusion of functions in Chapter 6, which now covers all issues related to functions

® Chapter sections on common errors and pitfalls to steer students away from common

programming errors

Replacement of complex examples with simpler ones (e.g., Solving the Sudoku problem
in Chapter 8 is replaced by a problem of checking whether a solution is correct. The com-
plete solution to the Sudoku problem is moved to the Companion Website.)

Expanded bonus Chapter 18 introduces algorithmic techniques: dynamic programming,
divide-and-conquer, backtracking, and greedy algorithm with new examples to design
efficient algorithms

Introduction of new C++11 features of foreach loops and auto type inference in the bonus
chapters and of lambda functions in the supplements on the Companion Website

Pedagogical Features

The book uses the following elements to help students gain the most from the material:

The chapter Objectives list what students should learn so that they can determine whether
they have met these objectives after completing the chapter.

The chapter Introduction opens the discussion with representative problems to give the
reader an overview of what to expect.

m Key Points highlight the important concepts covered in each section.

® Check Points provide review questions to help students track their progress as they read

the chapter and evaluate their learning.

Problems and Case Studies, carefully chosen and presented in an easy-to-follow style,
teach problem solving and programming concepts. The book uses many small, simple, and
stimulating examples to present important ideas.

The Chapter Summary reviews the important subjects that students should understand
and remember. It helps them reinforce the key concepts of the chapter.

Preface wii

® Self-test quizzes are available online through MyProgrammingLab (www.myprogramminglab

.com) for students to self-test on programming concepts and techniques.
Programming Exercises, grouped by sections, provide students with opportunities to ap-

ply their newly acquired skills. The level of difficulty is rated as easy (no asterisk), mod-
erate (*), hard (*#), or challenging (**#). The trick of learning programming is practice,
practice, and praetice. To that end, the book provides numerous exercises.

® Notes, Tips, Cautions, and Pedagogical Notes are inserted throughout the text 10 offer
valuable advice and insight on important aspects of program development.

w

Note

= Ti
@P

Caution

é

= Pedagogical Note

Teaches good programming style and practice.

Helps students avoid the pitfalls of programming errors.

Gives advice on how to use the materials in the book effectively.

Flexible Chapter Orderings

The book provides flexible chapter orderings, as shown in the following diagram:

Provides additional information on the subject and reinforces important concepts.

Chapter 1 Introduction to — Chapter 9 Objectsand Classes | Chapter 17 Recursion |
Computers, Programs, and C++
Y Chapter 10 Object-Oriented Chapter 18 Developing Efficient |
Chapter 2 Elementary Thinking Algorithms
Programming - {
_ _ Chapter 11 Pointers and Dynamic Chapter 19 Sortin
Chapter 3 Selections | Memory Management . - 2 I
1 Bt
Chapter 4 Mathematical Functio Chapter 12 Templates, Vectors, Chapter 20 Linked Lists, Queucs,
Characters, and Strings _and Stacks ’ and Priority Queues
Chapter 5 Loops | | | P Chapter 13 File tnputand Output | | Chapter 21 Binary Search Trees |
Chapler 6 Functions | - Chapter 14 Operator Overloading] Chapter 22 Sl'!.:‘nmaﬁms iraf
Chapter 7 Single-Dimensional Chapter 23 STL Algorithms
Arr‘:ys mﬂé -Stmri?igs '.‘_4 L. Chapter 15 Inheritance and s I
: Polymorphism
Chapter 24 _Cvraphs and
Chapter 8 Multidimensional Applications 158
Arrays Chapter 16 Exception Handling] Y
. Chapter 25 Weighted Graphs and

» Chapters
18-26 are
bonus
chapters
posted on
the book’s
Companion
Website

Chapter 26 AVL Treesand =~ | J
Splay Trees

viii Preface

Organization of the Book

The chapters can be grouped into three parts, which together form a solid introduction to
problem solving and programming using C-++.

Part I: Fundamentals of Programming (Chapters 1-8)

This part is a stepping-stone, which prepares you to embark on the journey of learning pro-
gramming with C++. You will begin to know C++ (Chapter 1) and will learn elementary
programming techniques with primitive data types, expressions, and operators (Chapter 2),
selection statements (Chapter 3), mathematical functions, characters, and strings (Chapter 4),
loops (Chapter 5), functions (Chapter 6), and arrays (Chapters 7-8).

Part II: Object-Oriented Programming (Chapters 9-16)

This part introduces object-oriented programming. C++ is an object-oriented programming
language that uses abstraction, encapsulation, inheritance, and polymorphism to provide great
flexibility, modularity, and reusability in developing software. You will learn programming
with objects and classes (Chapter 9); design classes (Chapter 10); explore pointers and dynamic
memory management (Chapter 11); develop generic classes using templates (Chapter 12); use
10 classes for file input and output (Chapter 13); use operators to simplify functions (Chap-
ter 14); define classes from base classes (Chapter 15); and create robust programs using ex-
ception handling (Chapter 16).

Part I11: Algorithms and Data Structures (Chapter 17 and Bonus Chapters 18-26)

This part introduces the main subjects in a typical data structures course. Chapter 17 intro-
duces recursion to write functions for solving inherently recursive problems. Chapter 18
introduces how to measure algorithm efficiency in order to choose an appropriate algorithm
for applications. Chapter 19 presents various sorting algorithms and analyzes their complexi-
ties. You will learn how to design and implement linked lists, queues, and priority queues in
Chapter 20. Chapter 21 introduces binary search trees. Chapters 22 and 23 cover the standard
template library in C++. Chapters 24 and 25 introduce graph algorithms and applications.
Chapter 26 introduces balanced binary search trees.

C++ Development Tools

You can use a text editor, such as the Windows Notepad or WordPad, to create C++ programs,
and you can compile and run the programs from the command window. You can also use a
C++ development tool, such as Visual C++ or Dev-C-++. These tools support an integrated
development environment (IDE) for rapidly developing C++ programs. Editing, compiling,
building, executing, and debugging programs are integrated in one graphical user interface.
Using these tools effectively will greatly increase your programming productivity. Creating,
compiling, and running programs using Visual C++ and Dev-C++ are introduced in the sup-
plements on the Companion Website. The programs in this book have been tested on Visual
C++ 2012 and the GNU C++ compiler.

Online Pracfice, and Assessment
with MyProgrammingLab™

MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of program-
ming. Through practice exercises and immediate, personalized feedback, MyProgrammingLab
improves the programming competence of beginning students who often struggle with the
basic concepts and paradigms of popular high-level programming languages.

A self-study and homework tool, a MyProgrammingLab course consists of hundreds of
small practice problems organized around the structure of this textbook. For students, the

Preface ix

system automatically detects errors in the logic and syntax of their code submissions and offers
targeted hints that enable students to figure out what went wrong—and why. For instructors,
a comprehensive gradebook tracks correct and incorrect answers and stores the code inputted
by students for review.

MyProgrammingLab is offered to users of this book. For a full demonstration, to see feed-
back from instructors and students, or to get started using MyProgrammingLab in your course,
visit www.myprogramminglab.com.

Student Resource Website

The Student Resource Website, accessible from www.pearsonhighered.com/liang, contains the
following:

B Answers to Check Points
Solutions to even-numbered Programming Exercises

|
® Source code for the examples
B Algorithm animations

]

Errata

Supplements

The text covers the essential subjects. The supplements extend the text to introduce additional
topics that might be of interest to readers. The supplements are available oh the Companion
Website (www.pearsonhighered.com/liang). _

Instructor Resource Website

The Instructor Resource Website, accessible from www.pearsonhighered com/liang, contains the
following:

B Microsoft PowerPoint slides with interactive buttons to view full-color, syntax-highlighted
source code and to run programs without leaving the slides.

m Solutions to all Programming Exercises. Students have access to the soluuons of even-
numbered Programming Exercises.

® Sample exams. Most exams have four parts:
B Multiple-Choice or Short-Answer questions
® Correct programming errors
® Trace programs
B Write programs

W Projects. In general, each project gives a description and asks students to analyze, design,
and implement the project.

Some students have requested the materials from the Instructor Resource Website. Please
understand that these are for instructors only and such requests will not be honored.

VideoNotes

Twenty percent of the VideoNotes in this edition are brand new! VideoNotes were introduced
in the previous edition to provide additional help by presenting examples of key topics and
to show how to solve problems completely, from design through coding. VideoNotes can

VideoNote

X Preface

be accessed on the book’s Companion Website using the student access code printed on the
inside front cover of this book. If you have a used book, you can purchase access to the
VideoNotes and other premium content through the Purchase link on the Companion Website
(www.pearsonhighered.com/liang).

Acknowledgments

I would like to thank Armstrong Atlantic State University for enabling me to teach what I
write and for supporting me to write what I teach. Teaching is the source of inspiration for
continuing to improve the book. I am grateful to the instructors and students who have offered
comments, suggestions, bug reports, and praise.

This book was greatly enhanced thanks to outstanding reviews for this and previous
editions. The following reviewers contributed: Anthony James Allevato (Virginia Tech);
Alton B. Coalter (University of Tennessee, Martin); Linda Cohen (Forsyth Tech); Frank
David Ducrest (University of Louisiana, Lafayette); Waleed Farag (Indiana University of
Pennsylvania); Max I. Fomitchev (Penn State University); Jon Hanrath (Illinois Institute of
Technology); Michael Hennessy (University of Oregon); Debbie Kaneko (Old Dominion
University); Henry Ledgard (University of Toledo): Brian Linard (University of California,
Riverside); Dan Lipsa (Armstrong Atlantic State University); Jayantha Herath (St. Cloud
State University); Daqing Hou (Clarkson University); Hui Liu (Missouri State University);
Ronald Marsh (University of North Dakota); Peter Maurer (Baylor University); Jay McCarthy
(Brigham Young University); Jay D. Morris (Old Dominion University); Charles Nelson (Rock
Valley College); Ronald Del Porto (Pennsylvania State University); Mitch Pryor (University
of Texas); Martha Sanchez (University of Texas at Dallas); William B. Seales (University
of Kentucky); Kate Stewart (Tallahassee Community College); Ronald Taylor (Wright State
University); Matthew Tennyson (Bradley University); David Topham (Ohlone College);
Margaret Tseng (Montgomery College); and Barbara Tulley (Elizabethtown College).

It is a great pleasure, honor, and privilege to work with Pearson. I would like to thank Tracy
Johnson and her colleagues Marcia Horton, Carole Snyder, Yez Alayan, Scott Disanno, Kayla
Smith-Tarbox, Gillian Hall, and their colleagues for organizing, producing, and promoting
this project.

As always, T am indebted to my wife, Samantha, for her love, support, and encouragement.

C++ Quick Reference

if Statements switch Statements Array/Initializer
if (condition) switch (intExpression) int 1ist[10];
{ { int]1St[] = {1: 2| 3! 4};
statements; case valuel:
} statements; Multidimensional Array/Initializer
break;
. int Tist[19][15];
if (condition) case valuen: int Tist[2][2] = {{1, 2}, {3, 4}};
{ statements;
statements; break;
} default: Dynamic Memory Creation/Deletion
else statements;
{ } int* pl = new int;
SIatEments; int* p2 = new int[10];
} delete pl;

delete [] p2;

if (conditionl)

{
statements; Frequently Used functions
else if (condition2) time(0) returns current time
{ srand(seed) sets a new seed for generating random numbers
statements; rand() returns a random integer
} pow(a, b) returns a’
?1se Character Functions
Statements; isdigit(c) returns true if c is a digit.
} isalpha(c) returns true if c is a letter.
isalnum(c) returns true if c is a letter or a digit.
islower(c) returns true if c is a Towercase letter.
isupper(c) returns true if c is an uppercase letter.
tolower(c) returns a lowercase for c.
toupper(c) returns an uppercase for c.
Loop Statements :

C-String Functions
while (condition)

{ strien returns string length
statements; strecpy copies a string]
} strcat concatenate two strings
strcmp compares two strings
do atol converts a string to a Tong value
{ itoa converts a an integer a string
statements;

Voitle (condition): The string Class Member Functions

append appends new contents to the string
for (init; condition; insert inserts new contents to the string
adjustment) at retrieves character from the string
{ 0 string subscript operator
statements; Tength returns the length of the string.
} substr returns a substring from the string

Companion Website: www.cs.armstrong.edu/liang/cpp3e

CONTENTS

Chapter 1 - Introduction to Computers,

Programs, and C++ 1
1.1 Introduction 7
1.2 What Is a Computer? 2
1.3 Programming Languages 9
1.4 Operating Systems 12
1.5 History of C++ 13
1.6 A Simple C++ Program 14
1.7 C++ Program-Development Cycle 18
1.8 Programming Style and Documentation 20
g 1.9 Programming Errors 21
Chapter 2 Elementary Programming 29
2.1 Introduction 30
2.2 Writing a Simple Program 30
2.3 Reading Input from the Keyboard 32
24 Identifiers 35
2.5 Variables 35
2.6 Assignment Statements and Assignment
- Expressions 37
2.7 Named Constants 39
2.8 Numeric Data Types and Operations 40
2.9 Evaluating Expressions and Operator Precedence 45
2.10 Case Study: Displaying the Current Time 47
2.11 Augmented Assignment Operators 49
2.12 Increment and Decrement Operators 50
2.3 Numeric Type Conversions 52
2.14 Software Development Process 55
2.15 Case Study: Counting Monetary Units 59
2.16 Common Errors 61
Chapter 3 Selections 7
3.1 Introduction 72
3.2 The bool Data Type 72
3.3 if Statements 73
3.4 Two-Way if-else Statements 76
3.5 —Nested if and Multi-Way if-else Statements : 77
3.6 Common Errors and Pitfalls 79
3.7 Case Study: Computing Body Mass Index 84
3.8 Case Study: Computing Taxes 86
3.9 Generating Random Numbers 89
3.10 Logical Operators 91
3.1l Case Study: Determining Leap Year 94
3.12 Case Study: Lottery 95
3.13 switch Statements 97
3.14 Conditional Expressions 101
3.15 Operator Precedence and Associativity 102

3.16 Debugging 104

Chapter 4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9
4.10
4.11

Chapter 5
5]
5.2
53
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

Chapter 6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
68
6.9

6.10
6.11
6.12
6.13
6.14
6.15

Chapter 7

7.1
7
73

Mathematical Functions,

Contents xiii

Characters, and Strings 117
Introduction 118
Mathematical Functions 118
Character Data Type and Operations 122
Case Study: Generating Random Characters 126
Case Study: Guessing Birthdays 128
Character Functions 131
Case Study: Converting a Hexadecimal Digit

to a Decimal Value 133
The string Type 134
Case Study: Revising the Lottery Program Using Strings 138
Formatting Console Output 140
Simple File Input and Output 144
Loops 155
Introduction 156
The while Loop 156
The do-while Loop 168
The for Loop 171
Which Loop to Use? 174
Nested Loops 176
Minimizing Numeric Errors 178
Case Studies 179
Keywords break and continue 185
Case Study: Checking Palindromes 188
Case Study: Displaying Prime Numbers 190
Functions 207
Introduction 208
Defining a Function 209
Calling a Function 210
void Functions i 212
Passing Arguments by Value 215
Modularizing Code 216
Overloading Functions 218
Function Prototypes 221
Default Arguments 223
Inline Functions 224
Local, Global, and Static Local Variables 225
Passing Arguments by Reference 230
Constant Reference Parameters 239
Case Study: Converting Hexadecimals to Decimals 239
Function Abstraction and Stepwise Refinement 242
Single-Dimensional Arrays

and C-Strings 265
Introduction 266
Array Basics 267

Problem: Lotto Numbers.

273

xiv Contents

74
the
7.6

ra {f

Chapter 8
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

Chapter 9
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

9.10
9.11

Chapter 10
10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

10.10

Chapter 11
(.1

1.2
1.3

Problem: Deck of Cards

Passing Arrays to Functions

Preventing Changes of Array Arguments

in Functions

Returning Arrays from Functions

Problem: Counting the Occurrences of Each Letter
Searching Arrays

Sorting Arrays

C-Strings

Multidimensional Arrays

Introduction

Declaring Two-Dimensional Arrays
Processing Two-Dimensional Arrays

Passing Two-Dimensional Arrays to Functions
Problem: Grading a Multiple-Choice Test

_Problem: Finding a Closest Pair

Preblem: Sudoku
Multidimensional Arrays

Objects and Classes

Introduction

Defining Classes for Objects

Example: Defining Classes and Creating Objects
Constructors ;

Constructing and Using Objects

Separating Class Definition from Implementation
Preventing Multiple Inclusions

Inline Functions in Classes

Data Field Encapsulation

The Scope of Variables

Class Abstraction and Encapsulation

Object-Oriented Thinking

Introduction

The string Class

Passing Objects to Functions

Array of Objects

Instance and Static Members

Constant Member Functions

Thinking in Objects

Object Composition

Case Study: The StackOfIntegers Class
Class Design Guidelines

Pointers and Dynamic
Memory Management

Introduction

Pointer Basics

Defining Synonymous Types Using

the typedef Keyword

Using const with Pointers

Arrays and Pointers

Passing Pointer Arguments in a Function Call

276
278

280
281
284
286
290
292

309

310
310

311
314
315
317
319
322

341

342
342
344
347
348

351
354
355
356
359
361

371

372
372

381
384
386
390
392
398
400
402

411

412
412

417
418
419
422

1.7
1.8
11.9
11.10
It
11.12
11,13
11.14
1115

Chapter 12
12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8

Chapter 13

13.1
13.2
13.3
13.4
13.5
13.6
1357
13.8
13.9

Chapter 14

14.1
14.2
143
14.4
14.5
14.6
14.7
14.8
14.9

14.10

14.11

14.12
14.13

Chapter 15

15.1
15.2
15.3
15.4
15.5
15.6

Contents

Returning a Pointer from Functions
Useful Array Functions

Dynamic Persistent Memory Allocation
Creating and Accessing Dynamic Objects
The this Pointer

Destructors

Case Study: The Course Class

Copy Constructors

Customizing Copy Constructors

Templates, Vectors, and Stacks

Introduction

Templates Basics

Example: A Generic Sort

Class Templates

Improving the Stack Class

The C++ vector Class

Replacing Arrays Using the vector Class
Case Study: Evaluating Expressions

File Input and Output

Introduction

Text /O

Formatting Output

Functions: getline, get, and put
fstream and File Open Modes
Testing Stream States

Binary 1/O :

Random Access File

Updating Files

Operator Overloading

Introduction

The Rational Class

Operator Functions

Overloading the Subscript Operator []
Overloading Augmented Assignment Operators
Overloading the Unary Operators
Overloading the ++ and — Operators
friend Functions and friend Classes
Overloading the << and >> Operators
Automatic Type Conversions

Defining Nonmember Functions for
Overloading Operators

The Rational Class with Overloaded
Function Operators

Overloading the = Operators

Inheritance and Polymorphism

Introduction

Base Classes and Derived Classes
Generic Programming
Constructors and Destructors
Redefining Functions
Polymorphism

XV

426
427
429
433
435
436
439
442
445

455

456
456
460
462
469

471
474
477

491

492
492
498
499
502
504
506
513
516

523

524
524
530
532
534
535
535
537
539
541

542

543
251

559

560
560
568
569
574
575

xvi Contents

15.7 Virtual Functions and Dynamic Binding

15.8 The protected Keyword

15.9 Abstract Classes and Pure Virtual Functions
15.10 Casting: static_cast versus dynamic_cast

Chapter 16 Exception Handling

16.1 Introduction
16.2 Exception-Handling Overview
16.3 Exception-Handling Advantages
16.4 Exception Classes
16.5 Custom Exception Classes
16.6 Multiple Catches
16.7 Exception Propagation
16.8 Rethrowing Exceptions
16.9 Exception Specification
16.10 When'to Use Exceptions

Chapter 17 Recursion.

17.1 Introduction

17.2 Example: Factorials

17.3 Case Study: Fibonacci Numbers
17.4 Problem Solving Using Recursion
17.5 Recursive Helper Functions

17.6 Towers of Hanoi

17.7 Eight Queens

17.8 Recursion versus Iteration

17.9 Tail Recursion

576
580
581
589

597

598
598
601
603
607
612
617
618
620
621

625

626
626
630
633
635
638
642
645
645

The following bonus chapters are on the book’s Companion Website at

www.pearsonhighered.com/liang.

Chapter 18 Developing Efficient Algoriﬂ'vms
Chapter 19 Sorting

Chapter 20 Linked Lists, Queues,
and Priority Queues

Chapter 21 Binary Search Trees

Chapter 22° STL Containers .

Chapter 23 STL Algorithms

Chapter 24 Graphs and Applications

Chapter 25 Weighted Graphs and Apphcaﬁons
Chapter 26 AVL Trees and Splay Trees

18-1

19-1

20-1
21-1
22-1

23-1

- 24-1

25-1

26-1

