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PREFACE

The fourth edition of this book has been updated significantly from previous editions,
and it includes a coauthor. About one-third of the content of this edition is new
material,, and these additions are incorporated while maintaining the style and spirit of
the previous editions that are familiar to many of its readers.

The basic outlook and approach remain the same: To develop the subject of proba-
bility theory and stochastic processes as a deductive discipline and to illustrate the theory
with basic applications of engineering interest. To this extent, these remarks made in the
first edition are still valid: “The book is written neither for the handbook-oriented
students nor for the sophisticated few (if any) who can learn the subject from advanced
mathematical texts. It is written for the majority of engineers and physicists who have
sufficient maturity to appreciate and follow a logical presentation... There is an obvious
lack of continuity between the elements of probability as presented in introductory cour-
ses, and the sophisticated concepts needed in today’s applications.... Random varia-
bles, transformations, expected values, conditional densities, characteristic functions
cannot be mastered with mere exposure. These concepts must be clearly defined and
must be developed, one at a time, with sufficient elaboration. ”

Recognizing these factors, additional examples are added for further clarity,
and the new topics include the following.

Chapters 1 and 2 have undergone substantial rewriting. Chapter 1 has a detailed
section on Bernoulli’s theorem and games of chance (Sec. 1-3), and several exam-
ples are presented there including the classical gambler’s ruin problem to stimulate
student interest. In Chap. 2 various probability distributions are categorized and illus-
trated, and two kinds of approximations to the binomial distribution are carried out to
illustrate the connections among some of the random variables.

Chapter 3 contains new examples illustrating the usefulness of characteristic
functions and moment-generating functions including the proof of the DeMoivre —
Laplace theorem.

Chapter 4 has been rewritten with additional examples, and is complete in its
description of two random variables and their properties.

Chapter 6 contains a new Sec. 6-3 on Parameter estimation that includes key
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ideas on minimum variance unbiased estimation, the Cramer — Rao bound, the
Rao —Blackwell theorem, and the Bhattacharya bound.

In Chaps. 7 and 8, sections on Poisson processes are further expanded with
additional results. A new detailed section on random walks has also been added.

Chapter 10 includes a new subsection describing the parametrization of the class
of all admissible spectral extensions given a set of valid autocorrelations.

Because of the importance of queueing theory, the old material has undergone
complete revision to the extent that two new chapters (13 and 14) are devoted to this
topic. Chapter 13 describes Markov chains, their properties, characterization, and
the long-term (steady state) and transient behavior of the chain and illustrates various
theorems through several examples. In particular, Example 1326 The Game of
Tennis is an excellent illustration of the theory to analyze practical applications, and
the chapter concludes with a detailed study of branching processes, which have
important applications in queueing theory. Chapter 14 describes Markov processes
and queueing theory starting with the Chapman-kolmogorov equations and
concentrating on the birth-death processes to illustrate markovian queues. The
treatment, however, includes non-markovian queues and, machine servicing
problems, and concludes with an introduction to the network of queues.

The material in this book can be organized for various one semester courses:

e Chapters0to4: Probability Theory (for senior and/ or first-level graduate students)

® Chapters 5 and 6: Statistics and Estimation Theory (as a follow-up course to
Probability Theory)

® Chapters 7 to 9: Stochastic Processes (follow-up course to Probability Theory)

e Chapters 10 to 12: Spectrum Estimation and Filtering ( follow-up course to
Stochastic Processes)

e Chapters 13 and 14: Markov Chains and Queueing Theory ( follow-up course to
Probability Theory)

The authors would like to thank Ms. Catherine Fields Shultz, editor for electri-
cal and computer engineering at McGraw-Hill Publishing Company, Ms. Michelle
Flomenhoft and Mr. John Griffin, developmental editors, Ms. Sheila Frank, Project
manager and her highly efficient team, and Profs. D. P. Gelopulos, M. Georgio-
poulos, A. Haddad, T. Moon, J. Rowland, C. S. Tsang, J. K. Tugnait, and
O. C. Ugweje, for their comments, criticism, and guidance throughout the period
of this revision. In addition, Dr. Michael Rosse, several colleagues at Polytechnic
including Profs. Dante Youla, Henry Bertoni, Leonard Shaw and Ivan Selesnick, as
well as students Dr. Hyun Seok Oh, Mr. Jun Ho Jo, and Mr. Seung Hun Cha de-
serve special credit for their valuable help and encouragement during the preparation
of the manuscript. Discussions with Prof. C. Radhakrishna Rao about two of his key
theorems in statistics and other items are also gratefully acknowledged.

Athanasios Papoulis
S. Unnikrishna Pillai
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THE AXIOMS

CHAPTER

0

PROBABILITY

If the experiment is performed »n times and the event A occurs n, times, then, with
a high degree of certainty, the relative frequency n,/n of the occurrence of A is
close to P(A):

P(A) =n,/n (0-1)
provided that n is sufficiently large.

PARTITIONS. A partition U of a set S is a collection of mutually exclusive subsets
A, of S whose union equals S (Fig. 0-1).

A/U...UA, =S A,@:i@} i#*j (0-2)
Thus

U=[A,,....,A,]

P> We assign to each event A a number P(A) , which we call the probability of the

event A. This number is so chosen as to satisfy the following three conditions:

I P(A)=0 (0-3)
) P(S) =1 (0-4)
11 if AB={(J} then P(AUB) =P(A) +P(B) (0-5)

<



2

PROBABILITY AND RANDOM VARIABLES

EXAMPLE 0-1

These conditions are the axioms of the theory of probability. In the
development of the theory, all conclusions are based directly or indirectly on the

axioms and only on the axioms. Some simple consequences are presented next.
PROPERTIES. The probability of the impossible event is O:
P{J} =0 (0-6)
Indeed, A{ D} = {(D} and AU { (| =A; therefore [ see (0-5) ]
P(A) =P(AU) =P(A) + P{D}
For any A,
P(A) =1-P(A) <I1 (0-7)
because AUA =S and AA = |} ; hence
1 =P(S) =P(AUA) =P(A) +P(A)
For any A and B,
P(AUB) =P(A) +P(B) -P(AB) <P(A) +P(B) (0-8)

To prove this, we write the events AU B and B as unions of two mutually exclusive
events:

AUB=AUAB B=ABUAB
Therefore [ see (0-5) ]
P(AUB) =P(A) +P(AB)  P(B) =P(AB) +P(AB)

Eliminating P(ZB) , we obtain (0-8).
Finally, if BCA, then

P(A) =P(B) +P(AB)=P(B) (0-9)
because A = BUA B and B(A E) ={}.

P> Suppose that S consists of the four elements a,b,c, and d and C consists of the

sets {a} and {b}. Attaching to C the complements of {a} and {b| and their
unions and intersections, we conclude that the smallest field containing {a| and



