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Preface

Whether you're building the newest and hottest social media website or developing an
internal-use-only enterprise business intelligence application, scaling your data model
has never been more important. Traditional relational databases, while familiar, present
significant challenges and complications when trying to scale up to such “big data”
needs. Into this world steps MongoDB, a leading NoSQL database, to address these
scaling challenges while also simplifying the process of development.

However, in all the hype surrounding big data, many sites have launched their business
on NoSQL databases without an understanding of the techniques necessary to effec-
tively use the features of their chosen database. This book provides the much-needed
connection between the features of MongoDB and the business problems that it is suited
to solve. The book’s focus on the practical aspects of the MongoDB implementation
makes it an ideal purchase for developers charged with bringing MongoDB’s scalability
to bear on the particular problem you've been tasked to solve.

Audience

This book is intended for those who are interested in learning practical patterns for
solving problems and designing applications using MongoDB. Although most of the
features of MongoDB highlighted in this book have a basic description here, this is not
abeginning MongoDB book. For such an introduction, the reader would be well-served
to start with MongoDB: The Definitive Guide by Kristina Chodorow and Michael Dirolf
(O'Reilly) or, for a Python-specific introduction, MongoDB and Python by Niall O’Hig-
gins (O'Reilly).

Assumptions This Book Makes

Most of the code examples used in this book are implemented using either the Python
or JavaScript programming languages, so a basic familiarity with their syntax is essential
to getting the most out of this book. Additionally, many of the examples and patterns
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are contrasted with approaches to solving the same problems using relational databases,
50 basic familiarity with SQL and relational modeling is also helpful.

Contents of This Book

This book is divided into two parts, with Part I focusing on general MongoDB design
patterns and Part II applying those patterns to particular problem domains.

Part I: Design Patterns

Part I introduces the reader to some generally applicable design patterns in MongoDB.
These chapters include more introductory material than Part II, and tend to focus more
on MongoDB techniques and less on domain-specific problems. The techniques de-
scribed here tend to make use of MongoDB distinctives, or generate a sense of “hey,
MongoDB can't do that” as you learn that yes, indeed, it can.

Chapter 1: To Embed or Reference
This chapter describes what kinds of documents can be stored in MongoDB, and
illustrates the trade-offs between schemas that embed related documents within
related documents and schemas where documents simply reference one another by
ID. It will focus on the performance benefits of embedding, and when the com-
plexity added by embedding outweighs the performance gains.

Chapter 2: Polymorphic Schemas
This chapter begins by illustrating that MongoDB collections are schemaless, with
the schema actually being stored in individual documents. It then goes on to show
how this feature, combined with document embedding, enables a flexible and ef-
ficient polymorphism in MongoDB.

Chapter 3: Mimicking Transactional Behavior
This chapter is a kind of apologia for MongoDB’s lack of complex, multidocument
transactions. It illustrates how MongoDB’s modifiers, combined with document
embedding, can often accomplish in a single atomic document update what SQL
would require several distinct updates to achieve. It also explores a pattern for im-
plementing an application-level, two-phase commit protocol to provide transac-
tional guarantees in MongoDB when they are absolutely required.

Part Il: Use Cases

In Part I1, we turn to the “applied” part of Applied Design Patterns, showing several use
cases and the application of MongoDB patterns to solving domain-specific problems.
Each chapter here covers a particular problem domain and the techniques and patterns
used to address the problem.
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Chapter 4: Operational Intelligence

This chapter describes how MongoDB can be used for operational intelligence, or
“real-time analytics” of business data. It describes a simple event logging system,
extending that system through the use of periodic and incremental hierarchical
aggregation. It then concludes with a description of a true real-time incremental
aggregation system, the Mongo Monitoring Service (MMS), and the techniques and
trade-offs made there to achieve high performance on huge amounts of data over
hundreds of customers with a (relatively) small amount of hardware.

Chapter 5: Ecommerce
This chapter begins by describing how MongoDB can be used as a product catalog
master, focusing on the polymorphic schema techniques and methods of storing
hierarchy in MongoDB. It then describes an inventory management system that
uses optimistic updating and compensation to achieve eventual consistency even
without two-phase commit.

Chapter 6: Content Management Systems
This chapter describes how MongoDB can be used as a backend for a content man-
agement system. In particular, it focuses on the use of polymorphic schemas for
storing content nodes, the use of GridFS and Binary fields to store binary assets,
and various approaches to storing discussions.

Chapter 7: Online Advertising Networks
This chapter describes the design of an online advertising network. The focus here
is on embedded documents and complex atomic updates, as well as making sure
that the storage engine (MongoDB) never becomes the bottleneck in the ad-serving
decision. It will cover techniques for frequency capping ad impressions, keyword
targeting, and keyword bidding.

Chapter 8: Social Networking
This chapter describes how MongoDB can be used to store a relatively complex
social graph, modeled after the Google+ product, with users in various circles, al-
lowing fine-grained control over what is shared with whom. The focus here is on
maintaining the graph, as well as categorizing content into various timelines and
news feeds.

Chapter 9: Online Gaming
This chapter describes how MongoDB can be used to store data necessary for an
online, multiplayer role-playing game. We show how character and world data can
be stored in MongoDB, allowing for concurrent access to the same data structures
from multiple players.
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Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLSs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

L)
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Py

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

=

Using Code Examples

This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you're reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “MongoDB Applied Design Patterns by Rick
Copeland (O’Reilly). Copyright 2013 Richard D. Copeland, Jr., 978-1-449-34004-9”
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If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

0e) Safari Books Online is an on-demand digital library that delivers ex-
Safa Pl pert content in both book and video form from the world’s leading

BooksOnline  authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

0'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/mongodb-applied-design-
patterns.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.
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Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1
To Embed or Reference

When building a new application, often one of the first things you’ll want to do is to
design its data model. In relational databases such as MySQL, this step is formalized in
the process of normalization, focused on removing redundancy from a set of tables.
MongoDB, unlike relational databases, stores its data in structured documents rather
than the fixed tables required in relational databases. For instance, relational tables
typically require each row-column intersection to contain a single, scalar value. Mon-
goDB BSON documents allow for more complex structure by supporting arrays of val-
ues (where each array itself may be composed of multiple subdocuments).

This chapter explores one of the options that MongoDB’s rich document model leaves
open to you: the question of whether you should embed related objects within one
another or reference them by ID. Here, you’ll learn how to weigh performance, flexibility,
and complexity against one another as you make this decision.

Relational Data Modeling and Normalization

Before jumping into MongoDB’s approach to the question of embedding documents or
linking documents, we’ll take a little detour into how you model certain types of rela-
tionships in relational (SQL) databases. In relational databases, data modeling typically
progresses by modeling your data as a series of tables, consisting of rows and columns,
which collectively define the schema of your data. Relational database theory has defined
a number of ways of putting application data into tables, referred to as normal forms.
Although a detailed discussion of relational modeling goes beyond the scope of this text,
there are two forms that are of particular interest to us here: first normal form and third
normal form.




What Is a Normal Form, Anyway?

Schema normalization typically begins by putting your application data into the first
normal form (INF). Although there are specific rules that define exactly what INF
means, that’s a little beyond what we want to cover here. For our purposes, we can
consider INF data to be any data that’s tabular (composed of rows and columns), with
each row-column intersection (“cell”) containing exactly one value. This requirement
that each cell contains exactly one value is, as we’ll see later, a requirement that MongoDB
does not impose, with the potential for some nice performance gains. Back in our re-
lational case, let’s consider a phone book application. Your initial data might be of the
following form, shown in Table 1-1.

Table 1-1. Phone book v1

id name phone_number zip_code

1 Rik  555-111-1234 30062
2 Mike 555-222-2345 30062
3 Jemny 555-333-3456 01209

This data is actually already in first normal form. Suppose, however, that we wished to
allow for multiple phone numbers for each contact, as in Table 1-2.

Table 1-2. Phone book v2

id ‘name phone_numbers zip_code

1 Rick  555-111-1234 30062
2 Mike  555-222-2345;555-212-2322 30062
3 Jenny 555-333-3456;555-334-3411 01209

Now we have a table that’s no longer in first normal form. If we were to actually store
data in this form in a relational database, we would have to decide whether to store
phone_numbers as an unstructured BLOB of text or as separate columns (i.e., phone_num
ber®, phone_number1). Suppose we decided to store phone_numbers as a text column,
as shown in Table 1-2. If we needed to implement something like caller ID, finding the
name for a given phone number, our SQL query would look something like the
following:

SELECT name FROM contacts WHERE phone_numbers LIKE '%555-222-2345%';

Unfortunately, using a LIKE clause that’s not a prefix means that this query requires a
full table scan to be satisfied.

Alternatively, we can use multiple columns, one for each phone number, as shown in
Table 1-3.
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