MongoDBigiT 5 (&)

Applied Design
Patterns

O’REILLY"
% &K% iRt Rick Copeland %

MongoDBi& it was)
MongoDB Applied Design Patterns

Rick Copeland %

O’REILLY"

Beijing - Cambridge - Farnham - KéIn - Sebastopol - Tokyo
O’Reilly Media, Inc. 424X A& # K % i JaAt h BR

EHEMmS&E (CIP) &iRF

MongoDB it 33 /() FHE 2 (Copeland, R.)
FRCENA I ARPE R R, 201310

54532 MongoDB Applied Design Patterns

ISBN 978-7-5641-4458-6

L OM- I OF}- L. OFZEFIEERY — Hr
IV. © TP311.138

rh [i A 5 1 CIP Bdli % 7 (2013) 55203656 =

LI RS E AL AR I
B . 10-2013-137 5

©2013 by O’Reilly Media, Inc.

'Reilly Media, Inc. and Southeast University Press,

, 2013 O’Reilly Media, Inc., the owner of all rights

n whole or in part in any form.

e LW PR H A& d K R BRAE B RR
Media, Inc. #54%7T ,

"W PP BA 6 th RR Ae 4 3 AT £ ok BRAR A4 R AR BT AT B —— O’Reilly

BRACHT A, AT @ T, A4 4T 30 o Ao 23 R UAEATH XEH),

MongoDB it (GZENhR)

HRR & A7 R AKSE ek
Hb hE: FERPY R 2 5 Mh4. 210096

kR A (g
] Hik: http://www.seupress.com

W, -#Bf: press@seupress.com
EN Wil 45w T DRI PR 23)

A T8T K x 980 K 16 A
k. 11
B 215 T

e 20134810 HE 1 Bk

K 2013410 A5 1 ik ENk
5: ISBN 978-7-5641-4458-6
ffir: 36.00 ¢ ()

AL A A ENAE R A, 1 B S E R, BiE ((5H): 025-83791830

MW E T

Preface

Whether you're building the newest and hottest social media website or developing an
internal-use-only enterprise business intelligence application, scaling your data model
has never been more important. Traditional relational databases, while familiar, present
significant challenges and complications when trying to scale up to such “big data”
needs. Into this world steps MongoDB, a leading NoSQL database, to address these
scaling challenges while also simplifying the process of development.

However, in all the hype surrounding big data, many sites have launched their business
on NoSQL databases without an understanding of the techniques necessary to effec-
tively use the features of their chosen database. This book provides the much-needed
connection between the features of MongoDB and the business problems that it is suited
to solve. The book’s focus on the practical aspects of the MongoDB implementation
makes it an ideal purchase for developers charged with bringing MongoDB’s scalability
to bear on the particular problem you've been tasked to solve.

Audience

This book is intended for those who are interested in learning practical patterns for
solving problems and designing applications using MongoDB. Although most of the
features of MongoDB highlighted in this book have a basic description here, this is not
abeginning MongoDB book. For such an introduction, the reader would be well-served
to start with MongoDB: The Definitive Guide by Kristina Chodorow and Michael Dirolf
(O'Reilly) or, for a Python-specific introduction, MongoDB and Python by Niall O’Hig-
gins (O'Reilly).

Assumptions This Book Makes

Most of the code examples used in this book are implemented using either the Python
or JavaScript programming languages, so a basic familiarity with their syntax is essential
to getting the most out of this book. Additionally, many of the examples and patterns

vii

are contrasted with approaches to solving the same problems using relational databases,
50 basic familiarity with SQL and relational modeling is also helpful.

Contents of This Book

This book is divided into two parts, with Part I focusing on general MongoDB design
patterns and Part II applying those patterns to particular problem domains.

Part I: Design Patterns

Part I introduces the reader to some generally applicable design patterns in MongoDB.
These chapters include more introductory material than Part II, and tend to focus more
on MongoDB techniques and less on domain-specific problems. The techniques de-
scribed here tend to make use of MongoDB distinctives, or generate a sense of “hey,
MongoDB can't do that” as you learn that yes, indeed, it can.

Chapter 1: To Embed or Reference
This chapter describes what kinds of documents can be stored in MongoDB, and
illustrates the trade-offs between schemas that embed related documents within
related documents and schemas where documents simply reference one another by
ID. It will focus on the performance benefits of embedding, and when the com-
plexity added by embedding outweighs the performance gains.

Chapter 2: Polymorphic Schemas
This chapter begins by illustrating that MongoDB collections are schemaless, with
the schema actually being stored in individual documents. It then goes on to show
how this feature, combined with document embedding, enables a flexible and ef-
ficient polymorphism in MongoDB.

Chapter 3: Mimicking Transactional Behavior
This chapter is a kind of apologia for MongoDB’s lack of complex, multidocument
transactions. It illustrates how MongoDB’s modifiers, combined with document
embedding, can often accomplish in a single atomic document update what SQL
would require several distinct updates to achieve. It also explores a pattern for im-
plementing an application-level, two-phase commit protocol to provide transac-
tional guarantees in MongoDB when they are absolutely required.

Part Il: Use Cases

In Part I1, we turn to the “applied” part of Applied Design Patterns, showing several use
cases and the application of MongoDB patterns to solving domain-specific problems.
Each chapter here covers a particular problem domain and the techniques and patterns
used to address the problem.

vii | Preface

Chapter 4: Operational Intelligence

This chapter describes how MongoDB can be used for operational intelligence, or
“real-time analytics” of business data. It describes a simple event logging system,
extending that system through the use of periodic and incremental hierarchical
aggregation. It then concludes with a description of a true real-time incremental
aggregation system, the Mongo Monitoring Service (MMS), and the techniques and
trade-offs made there to achieve high performance on huge amounts of data over
hundreds of customers with a (relatively) small amount of hardware.

Chapter 5: Ecommerce
This chapter begins by describing how MongoDB can be used as a product catalog
master, focusing on the polymorphic schema techniques and methods of storing
hierarchy in MongoDB. It then describes an inventory management system that
uses optimistic updating and compensation to achieve eventual consistency even
without two-phase commit.

Chapter 6: Content Management Systems
This chapter describes how MongoDB can be used as a backend for a content man-
agement system. In particular, it focuses on the use of polymorphic schemas for
storing content nodes, the use of GridFS and Binary fields to store binary assets,
and various approaches to storing discussions.

Chapter 7: Online Advertising Networks
This chapter describes the design of an online advertising network. The focus here
is on embedded documents and complex atomic updates, as well as making sure
that the storage engine (MongoDB) never becomes the bottleneck in the ad-serving
decision. It will cover techniques for frequency capping ad impressions, keyword
targeting, and keyword bidding.

Chapter 8: Social Networking
This chapter describes how MongoDB can be used to store a relatively complex
social graph, modeled after the Google+ product, with users in various circles, al-
lowing fine-grained control over what is shared with whom. The focus here is on
maintaining the graph, as well as categorizing content into various timelines and
news feeds.

Chapter 9: Online Gaming
This chapter describes how MongoDB can be used to store data necessary for an
online, multiplayer role-playing game. We show how character and world data can
be stored in MongoDB, allowing for concurrent access to the same data structures
from multiple players.

Preface | ix

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLSs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

L)

\
~ “
A
\"‘ a
Py

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

=

Using Code Examples

This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you're reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require
permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “MongoDB Applied Design Patterns by Rick
Copeland (O’Reilly). Copyright 2013 Richard D. Copeland, Jr., 978-1-449-34004-9”

x | Preface

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

0e) Safari Books Online is an on-demand digital library that delivers ex-
Safa Pl pert content in both book and video form from the world’s leading

BooksOnline authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

0'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/mongodb-applied-design-
patterns.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Preface | xi

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Many thanks go to O’Reilly’s Meghan Blanchette, who endured the frustrations of trying
to get a technical guy writing a book to come up with a workable schedule and stick to
it. Sincere thanks also go to my technical reviewers, Jesse Davis and Mike Dirolf, who
helped catch the errors in this book so the reader wouldn't have to suffer through them.

Much additional appreciation goes to 10gen, the makers of MongoDB, and the won-
derful employees who not only provide a great technical product but have also become
genuinely close friends over the past few years. In particular, my thanks go out to Jared
Rosoff, whose ideas for use cases and design patterns helped inspire (and subsidize!)
this book, and to Meghan Gill, for actually putting me back in touch with O’Reilly and
getting the process off the ground, as well as providing a wealth of opportunities to
attend and speak at various MongoDB conferences.

Thanks go to my children, Matthew and Anna, who've been exceedingly tolerant of a
Daddy who loves to play with them in our den but can sometimes only send a hug over

Skype.

Finally, and as always, my heartfelt gratitude goes out to my wonderful and beloved wife,
Nancy, for her support and confidence in me throughout the years and for inspiring me
to many greater things than I could have hoped to achieve alone. I couldn’t possibly
have done this without you.

xii | Preface

Table of Contents

PIOTACR. oo iiie vid 3066 05 0 6 004 Fious S0k Bk 51606 30006 0008 3006500 856 ik 81618 6803 648 6358 006 B.0sd mis vii

Partl. Design Patterns

1. ToEmbed or Reference. ... ccoveicisaiiiinsisisassnssoivasvossossssissssossin 3
Relational Data Modeling and Normalization 3
What Is a Normal Form, Anyway? 4

So What's the Problem? 6
Denormalizing for Performance 7
MongoDB: Who Needs Normalization, Anyway? 8
MongoDB Document Format 8
Embedding for Locality 9
Embedding for Atomicity and Isolation 9
Referencing for Flexibility 11
Referencing for Potentially High-Arity Relationships 12
Many-to-Many Relationships 13
Conclusion 14

2. PolymorphicSchemas.oovvuiiiiiiiiiiiiiiii i 17
Polymorphic Schemas to Support Object-Oriented Programming 17
Polymorphic Schemas Enable Schema Evolution 20
Storage (In-)Efficiency of BSON 21
Polymorphic Schemas Support Semi-Structured Domain Data 22
Conclusion 23

3. Mimicking Transactional Behavior............c.ccoovviiiiiiiiiiiiiineninnnnn.. 25
The Relational Approach to Consistency 25
Compound Documents 26

Using Complex Updates 28

Optimistic Update with Compensation 29
Conclusion 33
Partll. Use Cases
4. Operational INCRIBIGONCE, . cs cos cs s w6 v 0 9 sisia s oin wisin w10 wis.s 300 0w mis o200 s1ein 37
Storing Log Data 37
Solution Overview 37
Schema Design 38
Operations 39
Sharding Concerns 48
Managing Event Data Growth 50
Pre-Aggregated Reports 52
Solution Overview 52
Schema Design 53
Operations 59
Sharding Concerns 63
Hierarchical Aggregation 63
Solution Overview 64
Schema Design 65
MapReduce 65
Operations 67
Sharding Concerns 72
5. ECOMMIBIORL » e s wins min s s vy sissn votn siws wisos wig's s 2 i wisin wowis i o en sioe 08 4 310 b 0in oo 75
Product Catalog 75
Solution Overview 75
Operations 80
Sharding Concerns 83
Category Hierarchy 84
Solution Overview 84
Schema Design 85
Operations 86
Sharding Concerns 90
Inventory Management 91
Solution Overview 91
Schema 92
Operations 93
Sharding Concerns 100
6. Content Management Systems.cvuivuiiennernierniernneenneennennnes 101

v

| Table of Contents

Metadata and Asset Management 101

Solution Overview 101
Schema Design 102
Operations 104
Sharding Concerns 110
Storing Comments 111
Solution Overview 111
Approach: One Document per Comment 111
Approach: Embedding All Comments 114
Approach: Hybrid Schema Design 117
Sharding Concerns 119
7. Online AdvertisingNetWorks. veveseosassonnonsnesossossossessssossense 121
Solution Overview 121
Design 1: Basic Ad Serving 121
Schema Design 122
Operation: Choose an Ad to Serve 123
Operation: Make an Ad Campaign Inactive 123
Sharding Concerns 124
Design 2: Adding Frequency Capping 124
Schema Design ' 124
Operation: Choose an Ad to Serve 125
Sharding 126
Design 3: Keyword Targeting 126
Schema Design 127
Operation: Choose a Group of Ads to Serve 127
8. S0Cial NEtWOrKing.cuovrrnnieeiire i eiiineeneeeeiieeennineannnns 129
Solution Overview 129
Schema Design 130
Independent Collections 130
Dependent Collections 132
Operations 133
Viewing a News Feed or Wall Posts 134
Commenting on a Post 135
Creating a New Post 136
Maintaining the Social Graph 138
Sharding 139
9. ONBNEGAMING. . v s uins s 5.0 w60 wom 0 wrais w150 6558 w0 0.0 w0 S0 Wik Bin.0 056 6.0 61800 03 "M
Solution Overview 141
Schema Design 142

Table of Contents | v

Character Schema 142

Item Schema 143
Location Schema 144
Operations 144
Load Character Data from MongoDB 145
Extract Armor and Weapon Data for Display 145
Extract Character Attributes, Inventory, and Room Information for Display 147

Pick Up an Item from a Room 147
Remove an Item from a Container 148
Move the Character to a Different Room 149

Buy an Item 150
Sharding 151
BEREIWORT, .5 o0 5.0 5105 w06 30w e ok 0 i s v 0 978 5.0 5708 T sl M W50 .45 550 v 153
IORBERL & s s s s s s et 0 oo winin a1 Wi Wik o 10 50 il 06 1% s — sv 199

vi | Table of Contents

PART

Design Patterns

CHAPTER 1
To Embed or Reference

When building a new application, often one of the first things you’ll want to do is to
design its data model. In relational databases such as MySQL, this step is formalized in
the process of normalization, focused on removing redundancy from a set of tables.
MongoDB, unlike relational databases, stores its data in structured documents rather
than the fixed tables required in relational databases. For instance, relational tables
typically require each row-column intersection to contain a single, scalar value. Mon-
goDB BSON documents allow for more complex structure by supporting arrays of val-
ues (where each array itself may be composed of multiple subdocuments).

This chapter explores one of the options that MongoDB’s rich document model leaves
open to you: the question of whether you should embed related objects within one
another or reference them by ID. Here, you’ll learn how to weigh performance, flexibility,
and complexity against one another as you make this decision.

Relational Data Modeling and Normalization

Before jumping into MongoDB’s approach to the question of embedding documents or
linking documents, we’ll take a little detour into how you model certain types of rela-
tionships in relational (SQL) databases. In relational databases, data modeling typically
progresses by modeling your data as a series of tables, consisting of rows and columns,
which collectively define the schema of your data. Relational database theory has defined
a number of ways of putting application data into tables, referred to as normal forms.
Although a detailed discussion of relational modeling goes beyond the scope of this text,
there are two forms that are of particular interest to us here: first normal form and third
normal form.

What Is a Normal Form, Anyway?

Schema normalization typically begins by putting your application data into the first
normal form (INF). Although there are specific rules that define exactly what INF
means, that’s a little beyond what we want to cover here. For our purposes, we can
consider INF data to be any data that’s tabular (composed of rows and columns), with
each row-column intersection (“cell”) containing exactly one value. This requirement
that each cell contains exactly one value is, as we’ll see later, a requirement that MongoDB
does not impose, with the potential for some nice performance gains. Back in our re-
lational case, let’s consider a phone book application. Your initial data might be of the
following form, shown in Table 1-1.

Table 1-1. Phone book v1

id name phone_number zip_code

1 Rik 555-111-1234 30062
2 Mike 555-222-2345 30062
3 Jemny 555-333-3456 01209

This data is actually already in first normal form. Suppose, however, that we wished to
allow for multiple phone numbers for each contact, as in Table 1-2.

Table 1-2. Phone book v2

id ‘name phone_numbers zip_code

1 Rick 555-111-1234 30062
2 Mike 555-222-2345;555-212-2322 30062
3 Jenny 555-333-3456;555-334-3411 01209

Now we have a table that’s no longer in first normal form. If we were to actually store
data in this form in a relational database, we would have to decide whether to store
phone_numbers as an unstructured BLOB of text or as separate columns (i.e., phone_num
ber®, phone_number1). Suppose we decided to store phone_numbers as a text column,
as shown in Table 1-2. If we needed to implement something like caller ID, finding the
name for a given phone number, our SQL query would look something like the
following:

SELECT name FROM contacts WHERE phone_numbers LIKE '%555-222-2345%';

Unfortunately, using a LIKE clause that’s not a prefix means that this query requires a
full table scan to be satisfied.

Alternatively, we can use multiple columns, one for each phone number, as shown in
Table 1-3.

4 | Chapter1:ToEmbed or Reference

