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Preface

Setting up equations and solving them has long been so important that, in popular
imagination, it has virtually come to describe what mathematical analysis and its
applications are all about. A central issue in the subject is whether the solution to
an equation involving parameters may be viewed as a function of those parameters,
and if so, what properties that function might have. This is addressed by the classical
theory of implicit functions, which began with single real variables and progressed
through multiple variables to equations in infinite dimensions, such as equations
associated with integral and differential operators.

A major aim of the book is to lay out that celebrated theory in a broader way
than usual, bringing to light many of its lesser known variants, for instance where
standard assumptions of differentiability are relaxed. However, another major aim
is to explain how the same constellation of ideas, when articulated in a suitably
expanded framework, can deal successfully with many other problems than just
solving equations.

These days, forms of modeling have evolved beyond equations, in terms, for ex-
ample, of problems of minimizing or maximizing functions subject to constraints
which may include systems of inequalities. The question comes up of whether the
solution to such a problem may be expressed as a function of the problem’s pa-
rameters, but differentiability no longer reigns. A function implicitly obtainable
this manner may only have one-sided derivatives of some sort, or merely exhibit
Lipschitz continuity or something weaker. Mathematical models resting on equa-
tions are replaced by “variational inequality” models, which are further subsumed
by “generalized equation” models.

The key concept for working at this level of generality, but with advantages even
in the context of equations, is that of the set-valued solution mapping which as-
signs to each instance of the parameter element in the model all the corresponding
solutions, if any. The central question is whether a solution mapping can be local-
ized graphically in order to achieve single-valuedness and in that sense produce a
function, the desired implicit function.

In modern variational analysis, set-valued mappings are an accepted workhorse
in problem formulation and analysis, and many tools have been developed for
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vi Preface

handling them. There are helpful extensions of continuity, differentiability, and re-
gularity of several types, together with powerful results about how they can be ap-
plied. A corresponding further aim of this book is to bring such ideas to wider
attention by demonstrating their aptness for the fundamental topic at hand.

In line with classical themes, we concentrate primarily on local properties of so-
lution mappings that can be captured metrically, rather than on results derived from
topological considerations or involving exotic spaces. In particular, we only briefly
discuss the Nash—Moser inverse function theorem. We keep to finite dimensions in
Chapters 1 to 4, but in Chapters 5 and 6 provide bridges to infinite dimensions.
Global implicit function theorems, including the classical Hadamard theorem, are
not discussed in the book.

In Chapter 1 we consider the implicit function paradigm in the classical case of
the solution mapping associated with a parameterized equation. We give two proofs
of the classical inverse function theorem and then derive two equivalent forms of it:
the implicit function theorem and the correction function theorem. Then we grad-
ually relax the differentiability assumption in various ways and even completely
exit from it, relying instead on the Lipschitz continuity. We also discuss situations
in which an implicit function fails to exist as a graphical localization of the so-
lution mapping, but there nevertheless exists a function with desirable properties
serving locally as a selection of the set-valued solution mapping. This chapter does
not demand of the reader more than calculus and some linear algebra, and it could
therefore be used by both teachers and students in analysis courses.

Motivated by optimization problems and models of competitive equilibrium,
Chapter 2 moves into wider territory. The questions are essentially the same as in
the first chapter, namely, when a solution mapping can be localized to a function
with some continuity properties. But it is no longer an equation that is being solved.
Instead it is a condition called a generalized equation which captures a more com-
plicated dependence and covers, as a special case, variational inequality conditions
formulated in terms of the set-valued normal cone mapping associated with a con-
vex set. Although our prime focus here is variational models, the presentation is
self-contained and again could be handled by students and others without special
background. It provides an introduction to a subject of great applicability which is
hardly known to the mathematical community familiar with classical implicit func-
tions, perhaps because of inadequate accessibility.

In Chapter 3 we depart from insisting on localizations that yield implicit func-
tions and approach solution mappings from the angle of a “varying set.” We identify
continuity properties which support the paradigm of the implicit function theorem in
a set-valued sense. This chapter may be read independently from the first two. Chap-
ter 4 continues to view solution mappings from this angle but investigates substitutes
for classical differentiability. By utilizing concepts of generalized derivatives, we are
able to get implicit mapping theorems that reach far beyond the classical scope.

Chapter 5 takes a different direction. It presents extensions of the Banach open
mapping theorem which are shown to fit infinite-dimensionally into the paradigm of
the theory developed finite-dimensionally in Chapter 3. Some background in basic
functional analysis is required. Chapter 6 goes further down that road and illustrates
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how some of the implicit function/mapping theorems from earlier in the book can
be used in the study of problems in numerical analysis.

This book is targeted at a broad audience of researchers, teachers and graduate
students, along with practitioners in mathematical sciences, engineering, economics
and beyond. In summary, it concerns one of the chief topics in all of analysis, his-
torically and now, an aid not only in theoretical developments but also in methods
for solving specific problems. It crosses through several disciplines such as real and
functional analysis, variational analysis, optimization, and numerical analysis, and
can be used in part as a graduate text as well as a reference. It starts with elemen-
tary results and with each chapter, step by step, opens wider horizons by increas-
ing the complexity of the problems and concepts that generate implicit function
phenomena.

Many exercises are included, most of them supplied with detailed guides. These
exercises complement and enrich the main results. The facts they encompass are
sometimes invoked in the subsequent sections.

Each chapter ends with a short commentary which indicates sources in the liter-
ature for the results presented (but is not a survey of all the related literature). The
commentaries to some of the chapters additionally provide historical overviews of
past developments.

Whidbey Island, Washington Asen L. Dontchev
August, 2008 R. Tyrrell Rockafellar
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Chapter 1
Functions Defined Implicitly by Equations

The idea of solving an equation f(p,x) = 0 for x as a function of p, say x = s(p),
plays a huge role in classical analysis and its applications. The function obtained in
this way is said to be defined implicitly by the equation. The closely related idea of
solving an equation f(x) =y for x as a function of y concerns the inversion of f.
The circumstances in which an implicit function or an inverse function exists and
has properties like differentiability have long been studied. Still, there are features
which are not widely appreciated and variants which are essential to seeing how the
subject might be extended beyond solving only equations. For one thing, properties
other than differentiability, such as Lipschitz continuity, can come in. But funda-
mental expansions in concept, away from thinking just about functions, can serve in
interesting ways as well.

As a starter, consider for real variables x and y the extent to which the equation
x? =y can be solved for x as a function of y. This concerns the inversion of the
function f(x) = x? in Figure 1.1 below, as depicted through the reflection that inter-
changes the x and y axes. The reflection of the graph is not the graph of a function,
but some parts of it may have that character. For instance, a function is obtained
from a neighborhood of the point B, but not from one of the point A, no matter how
small.

[

L

Fig. 1.1 Graphical localizations of the function y = x* and its inverse.

A.L. Dontchev and R.T. Rockafellar, Implicit Functions and Solution Mappings: A View 1
[from Variational Analysis, Springer Monographs in Mathematics.
DOI 10.1007/978-0-387-87821-8_1. (© Springer Science + Business Media, LL.C 2009



2 1 Functions Defined Implicitly by Equations

Although the reflected graph in this figure is not, as a whole, the graph of a
function, it can be regarded as the graph of something more general, a “‘set-valued
mapping” in terminology which will be formalized shortly. The question revolves
then around the extent to which a “graphical localization™ of a set-valued mapping
might be a function, and if so, what properties that function would possess. In the
case at hand, the reflected graph assigns two different x’s to y when y > 0, but no x
when y < 0, and just x =0 when y = 0.

To formalize that framework for the general purposes of this chapter, we focus
on set-valued mappings F from R” and R™, signaled by the notation

F:R'32R",

by which we mean correspondences which assign to each x € R" one or more ele-
ments of R™, or possibly none. The set of elements y € R™ assigned by F to x is
denoted by F(x). However, instead of regarding F as going from R" to a space of
subsets of R™ we identify as the graph of F the set

gph F = {(x,y) e R" x R"|y € F(x)}.

Every subset of R" x R™ serves as gph F for a uniquely determined F : R" = R™,
so this concept is very broad indeed, but it opens up many possibilities.

When F assigns more than one element to x we say it is multi-valued at x, and
when it assigns no element at all, it is empty-valued at x. When it assigns exactly
one element y to x, it is single-valued at x, in which case we allow ourselves to write
F(x) =y instead of F(x) = {y} and thereby build a bridge to handling functions as
special cases of set-valued mappings.

Domains and ranges get flexible treatment in this way. For F : R* =3 R™ the
domain is the set ‘

dom F = {x| F(x) # 0},

while the range is
rge F = {y|y € F(x) for some x},

so that dom F and rge F are the projections of gph F on R" and R™ respectively.
Any subset of gph F can freely be regarded then as itself the graph of a set-valued
submapping which likewise projects to some domain in R" and range in R".

The functions from R" to R™ are identified in this context with the set-valued
mappings F : R" = R"™ such that F is single-valued at every point of dom F. When
F is a function, we can emphasize this by writing F : R" — R™, but the notation
F : R" = R™ doesn’t preclude F from actually being a function. Usually, though, we
use lower case letters for functions: f : R" — R™. Note that in this notation f can still
be empty-valued in places; it’s single-valued only on the subset dom f of R". Note
also that, although we employ “mapping” in a sense allowing for potential multi-
valuedness (as in a “set-valued mapping”), no multi-valuedness is ever involved
when we speak of a “function.”

A clear advantage of the framework of set-valued mappings over that of only
functions is that every set-valued mapping F : R = R™ has an inverse, namely the



1 Functions Defined Implicitly by Equations 3
set-valued mapping F~! : R™ =2 R" defined by
F7'(y)={x|ye F(x)}.

The graph of F~! is generated from the graph of F simply by reversing (x,y) to
(»,x), which in the case of m = n = 1 corresponds to the reflection in Figure 1.1.
In this manner a function f always has an inverse f~' as a set-valued mapping.
The question of an inverse function comes down then to passing to some piece of
the graph of f~'. For that, the notion of “localization” must come into play, as
we are about to explain after a bit more background. Traditionally, a function f :
R" — R™ is surjective when rge f = R™ and injective when dom f = R" and f~'
is a function; full invertibility of f corresponds to the juxtaposition of these two
properties.

In working with R" we will, for now, keep to the Euclidean norm |x| associated
with the canonical inner product

(x,x'y = Z’;=| xjx; for x = (x1,...,%) and X' = (x},...,x,),
namely
, 1/2
x| = V/(5x) = [Z};,@] .
The closed ball around X with radius r is then
B, (%) = {x| |x—x/ < r}.

We denote the closed unit ball B;(0) by B. A neighborhood of X is any set U such
that B,(x) C U for some r > 0. We recall for future needs that the interior of a
set C C R" consists of all points x such that C is a neighborhood of x, whereas
the closure of C consists of all points x such that the complement of C is not a
neighborhood of x; C is open if it coincides with its interior and closed if it coincides
with its closure. The interior and closure of C will be denoted by int C and cl C.

Graphical localization. For F : R" =2 R™ and a pair (%,y) € gph F, a graphical
localization of F at % for y is a set-valued mapping F such that

gph F = (U x V) Ngph F for some neighborhoods U of % and V of §,
so that

Fox F(x)NV whenxeU,
X (1)} otherwise.

The inverse of F then has

=1
=1, _JF ' (yynU whenyeV,
F= )= {@ otherwise,

and is thus a graphical localization of the set-valued mapping F~' at y for X.
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Often the neighborhoods U and V can conveniently be taken to be closed balls
B,(x) and B, (y). Observe, however, that the domain of a graphical localization F
of F with respect to U and V may differ from U Ndom F and may well depend on
the choice of V.

Single-valuedness in localizations. By a single-valued localization of F at £ for y
will be meant a graphical localization that is a function, its domain not necessarily
being a neighborhood of x. The case where the domain is indeed a neighborhood of
X will be indicated by referring to a single-valued localization of F around X for
instead of just at X for y.

For the function f(x) = x? from R to R we started with, the set-valued inverse
mapping f~', which is single-valued only at 0 with f~'(0) = 0, fails to have a
single-valued localization at O for 0. But as observed in Figure 1.1, it has a single-
valued localization around y = | for x = —1.

In passing from inverse functions to implicit functions more generally, we need
to pass from an equation f(x) =y to one of the form

(1) f(p,x) =0 fora function f: R/ x R" — R"

in which p acts as a parameter. The question is no longer that of inverting f, but the
framework of set-valuedness is valuable nonetheless because it allows us to imme-
diately introduce the solution mapping

(2) S:R' = R" with S(p) = {x| f(p,x) =0}.

We can then look at pairs (5,%) in gph S and ask whether S has a single-valued
localization s around p for x. Such a localization is exactly what constitutes an
implicit function coming out of the equation. The classical implicit function theorem
deduces the existence from certain assumptions on f. A review of the form of this
theorem will help in setting the stage for later developments because of the pattern
it provides. Again, some basic background needs to be recalled, and this is also an
opportunity to fix some additional notation and terminology for subsequent use.

A function f : R" — R is upper semicontinuous at a point ¥ when x € int dom f
and for every € > 0 there exists § > 0 for which

f(x)— f(X) <& whenever x € dom f with |x—X| < &.
If instead we have
—€& < f(x) — f(x) whenever x € dom f with [x — | < J,

then f is said to be lower semicontinuous at X. Such upper and lower semicontinuity
combine to continuity, meaning the existence for every € > 0 of a § > 0 for which

|f(x) — f(X)] <& whenever x € dom f with |[x—%| < 3.



| Functions Defined Implicitly by Equations 5

This condition, in our norm notation, carries over to defining the continuity of a
vector-valued function f : R” — R™ at a point X € intdom f. However, we also
speak more generally then of f being continuous at X relative to a set D when
X € D C dom f and this last estimate holds for x € D; in that case X need not belong
to intdom f. When f is continuous relative to D at every point of D, we say it is
continuous on D. The graph gph f of a function f : R" — R™ with closed domain
dom f that is continuous on D = dom f is a closed set in R" x R™.

A function f : R" — R™ is Lipschitz continuous relative to a set D, or on a set D,
if D C dom f and there is a constant K > O such that

lf(x) — f(x)| < k|x' —x| forall X ,x e D.

If f is Lipschitz continuous relative to a neighborhood of a point X € intdom f, f is
said to be Lipschitz continuous around %. A function f : R x R" — R™ is Lipschitz
continuous with respect to x uniformly in p near (p,X) € intdom f if there is a
constant K > 0 along with neighborhoods U of X and Q of p such that

If(p,x) — f(p.,x)| < k|x' —x| forall X,xe€ U and p € Q.

Differentiability entails consideration of linear mappings. Although we generally
allow for multi-valuedness and even empty-valuedness when speaking of “map-
pings,” single-valuedness everywhere is required of a linear mapping, for which we
typically use a letter like A. A linear mapping from R" to R™ is thus a function
A:R'" — R" with dom A = R" which obeys the usual rule for linearity:

A(ax+ By) = aAx+ BAy for all x, y € R" and all scalars «, B € R.

The kernel of A is
ker A = {x|Ax = 0}.

In the finite-dimensional setting, we carefully distinguish between a linear mapping
and its matrix, but often use the same notation for both. A linear mapping A : R" —
R" is represented then by a matrix A with m rows, n columns, and components a; ;:

ap a2 -+ QA
az) ay - a
Aml Adm2 -~ Qmn

The inverse A~! of a linear mapping A : R" — R™ always exists in the set-valued
sense, but it isn’t a linear mapping unless it is actually a function with all of R™ as its
domain, in which case A is said to be invertible. From linear algebra, of course, that
requires m = n and corresponds to the matrix A being nonsingular. More generally,
if m < n and the rows of the matrix A are linearly independent, then the rank of
the matrix A is m and the mapping A is surjective. In terms of the transpose of A,
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denoted by AT, the matrix AAT is in this case nonsingular. On the other hand, if
m > n and the columns of A are linearly independent then ATA is nonsingular.

Both the identity mapping and its matrix will be denoted by /, regardless of
dimensionality. By default, |A| is the operator norm of A induced by the Euclidean
norm,

|A| = max |Ax|.
lx|<1

A function f : R" — R™ is differentiable at a point ¥ when X € intdom f and
there is a linear mapping A : R" — R™ with the property that for every € > 0 there
exists & > 0 with

|f(x+h)— f(X) —Ah| < g|h| forevery h € R" with |h| < 8.

If such a mapping A exists at all, it is unique; it is denoted by Df(X) and called the
derivative of f at X. A function f : R" — R™ is said to be twice differentiable at a
point ¥ € intdom f when there is a bilinear mapping N : R" x R" — R™ with the
property that for every € > 0 there exists § > 0 with

|f (X4 h) — f(X) — Df(R)h — N(h,h)| < €|h|* forevery h € R" with |h| < §.

If such a mapping N exists it is unique and is called the second derivative of f at X,
denoted by D?f(%). Higher-order derivatives can be defined accordingly.

The m x n matrix that represents the derivative Df(X) is called the Jacobian of f
at ¥ and is denoted by V f(¥). In the notation x = (xy,...,x,) and f = (fi,..., fm),
the components of V f(X) are the partial derivatives of the component functions f;:

¥ = (3—,Q<x>)”

i,j=1

In distinguishing between Df (%) as a linear mapping and Vf(X) as its matrix, we
can guard better against ambiguities which may arise in some situations. When the
Jacobian Vf(x) exists and is continuous (with respect to the matrix norms associ-
ated with the Euclidean norm) on a set D C R", then we say that the function f is
continuously differentiable on D; we also call such a function smooth or €' on D.
Accordingly, we define k times continuously differentiable (€*) functions.

For a function f : RY x R — R™ and a pair (p, ) € int dom f, the partial deriva-
tive mapping D, f(p,X) of f with respect to x at (p, X) is the derivative of the function
g(x) = f(p,x) at x. If the partial derivative mapping is continuous as a function of
the pair (p,x) in a neighborhood of (5,%), then f is said to be continuously differen-
tiable with respect to x around (5, x). The partial derivative D, f(5,%) is represented
by an m x n matrix, denoted V, f(5, %) and called the partial Jacobian. Respectively,
D, f(p,X) is represented by the m x d partial Jacobian V, f( 5, X). I’s a standard fact
from calculus that if f is differentiable with respect to both p and x around (p, )
and the partial Jacobians V. f(p,x) and V, f(p,x) depend continuously on p and x,
then f is continuously differentiable around (p, %).
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Fig. 1.2 The front page of Dini’s manuscript from 1877/78.

With this notation and terminology in hand, let us return to the setting of im-
plicit functions in equation (1), as traditionally addressed with tools of differen-
tiability. Most calculus books present a result going back to Dini', who formulated
and proved it in lecture notes of 1877/78; the cover of Dini’s manuscript is displayed
above. The version typically seen in advanced texts is what we will refer to as the
classical implicit function theorem or Dini’s theorem. In those texts the set-valued
solution mapping S in (2) never enters the picture directly, but a brief statement in
that mode will help to show where we are headed in this book.

! Ulisse Dini (1845-1918). Many thanks to Danielle Ritelli from the University of Bologna for a
copy of Dini’s manuscript.



