RECENT ADVANCES IN CANCER RESEARCH AND THERAPY

癌症研究 及其治疗的最新进展

Edited by Xin-Yuan Liu • Sidney Pestka • Yu-Fang Shi

清华大学出版社

Recent Advances in Cancer Research and Therapy

癌症研究及其治疗的最新进展

Xin-Yuan Liu

Institute of Biochemistry and Cell Biology State Key Laboratory of Cell Biology Shanghai Institutes for the Biological Sciences Chinese Academy of Sciences People's Republic of China

Sidney Pestka

PBL Interferon Source Piscataway, NJ

Yu-Fang Shi

Institute of Health Sciences Laboratory of Immunology and Adult Stem Cell Shanghai Institutes for Biological Sciences Chinese Academy of Science People's Republic of China

清华大学出版社 北京

内容简介

本书集全球癌症研究与治疗领域的高水平专家集体之力,全面介绍了目前癌症领域的最新研究进展。内容包括:生物治疗的研究和应用的详细描述,超级干扰素的抗癌作用;抗体治疗、免疫治疗、肿瘤干细胞研究,化学治疗的研究和应用的介绍;细胞治疗(特异性及非特异性);中药临床和三氧化砷治疗白血病;对全球发病率最高的肺癌、肠癌的研究,针对中国癌症发病率特别高的食道癌、鼻咽癌的研究等。

本书的读者对象为所有从事癌症研究与治疗的专家、研究生、大学生。

版权所有,侵权必究。侵权举报电话: 010-62782989 13701121933

This edition of **Recent Advances in Cancer Research and Therapy** by Xin-Yuan Liu, Sidney Pestka, Yu-Fang Shi is published by arrangement with **ELSEVIER INC**, a Delaware corporation having its principal place of business at 360 Park Avenue South, New York, NY 10010, USA

English reprint edition copyright ©2012 by **ELSEVIER INC.** and **TSINGHUA UVIVERSITY PRESS** All Rights Reserved.

图书在版编目(CIP)数据

癌症研究及其治疗的最新进展 = Recent advances in cancer research and therapy: 英文/刘新垣, (美)帕斯卡 (Pestka, S.), 时玉舫主编. --北京: 清华大学出版社, 2013

ISBN 978-7-302-32630-4

I.①癌··· II.①刘··· ②帕··· ③时··· III. ①癌-治疗-研究-英文 IV.①R730.5

中国版本图书馆 CIP 数据核字(2013)第 122451 号

责任编辑: 薛 慧 封面设计: 何凤霞 责任印制: 杨 艳

出版发行: 清华大学出版社

网 址: http://www.tup.com.cn, http://www.wqbook.com

址: 北京清华大学学研大厦 A 座

社 总 机: 010-62770175

投稿与读者服务: 010-62776969, c-service@tup.tsinghua.edu.cn

购: 010-62786544

质量反馈: 010-62772015, zhiliang@tup.tsinghua.edu.cn

印 装 者: 北京铭成印刷有限公司

经 销:全国新华书店

开 本: 170mm×230mm 印 张: 43.75

版 次: 2013 年 9 月第 1 版 印 次: 2013 年 9 月第 1 次印刷

印 数: 1~1000

定 价: 198.00 元

产品编号: 037679-01

Preface

Cancer is one of the major causes of death in developed countries as well as in metropolises of developing countries. "Recent Advances in Cancer Research and Therapy" presents a synthesis of recent advances in some key research areas of cancer research for a broad range of readers, especially for those who are interested in cancer research and the development of novel cancer therapeutic strategies.

Biotherapy for cancer is one of the major focuses of this monograph, including the following chapters: the progress in cancer biotherapy in China, the excellent therapeutic effect of a supper interferon on solid tumor patients in Chapter 21, the HecI as target for breast cancer therapeutics, the liposome-mediated target gene therapy, p53-based cancer therapy, antibody cancer research and therapy, rewiring the intracellular signaling network in cancer, the cancer stem cell, the three-dimensional tumor model and cell therapy for cancer, and the first gene therapy product Gendicine[®] in cancer therapy. The chapter on "Cancer Therapy Gene-Viro-Therapy" (CTGVT) describes a new therapeutic strategy combining gene therapy and oncolytic virus therapy, which has much better antitumor effect than that of respective gene therapy or oncolytic virus therapy alone.

In the cancer chemotherapy area, we gathered some well-written chapters containing comprehensive analysis of this critical subject. One chapter deals with multidrug resistance to cancer chemotherapy. Another excellent chapter entitled "Doxorubicin Cardiotoxicity Revisited: ROS versus Top2" provides a detailed review on the mechanisms of therapeutic effects of doxorubicin.

In addition, this monograph carries some special traits of Chinese cancer research, for example, the role of traditional Chinese medicine in clinical oncology and the arsenic trioxide therapy for glioma. Esophageal carcinoma is a special cancer causing half of the world's mortality in China and the Chinese morbidity of nasopharyngeal carcinoma is also very high. We have obtained very good experience in the prevention and treatment of these two kinds of cancer. Very good data were gained in China for the diagnosis and prevention of colorectal cancer. A chapter on small-cell lung cancer mainly focused on *LKB1*, a gene that modulates lung cancer differentiation and metastasis.

This monograph represents contributions of many outstanding scientists, including Dr. Sidney Pestka—The National Medal of Technology Laureate who was personally presented with the medal by President Bush—and the Academicians Wen-Hwa Lee and Eva Lee, who have more than 25 publications in *Nature, Science*, and *Cell*. Academician Mien-Chie Hung has published more than 10 papers in *Nature, Science*, and *Cell* and 13 papers in *Cancer Cell* and 7 in *Natural Cell*

xviii Preface

Biology. Other well-known scientists all have made great contributions to this monograph, including Academician Leory F. Liu, Academia Sinica, Taiwan (AST), and Prof. Jian-Ting Zhang. Nine Chinese mainland academicians made great contributions to this monograph; five from the Chinese Academy of Science (CAS): Kai-xian Chen, Xin-Yuan Liu, Yu-Quan Wei, Yi-xin Zeng, and Kai-tai Yao and four from the Chinese Academy of Engineering (CAE): Yong-su Zhen, Yan Sun, Jian Ding, and Bao-Feng Yang. Besides these 13 Chinese academicians, some other scientists who are not member of CAS, CAE, or AST but may have higher merits in the cancer field also have contributed to this monograph. They are as follows: Prof. Anning Lin, our director at the Shanghai Institute of Biochemistry and Cell Biology. He is also a Chinese Thousand Talent Plan Laureate, an expert in JNK1 and NF-kβ; Prof. Xin Lu, director of Oxford Ludwig Institute, a pioneer in p53 research; Prof. Qi-Min Zhan, who serves as the deputy director of Chinese Academy of Medical Sciences; Prof. Shu Zheng, the formal principal of Zhejiang Medical University and Vice president, International Society of University Colon and Rectal Cancer Surgeons; Prof. Hua Liu, the three-dimensional cancer model innovator; Prof. Zhao-Hui Peng, the developer of the first marketed gene therapy product, Gendicine®. Contributors also include Prof. Er-Wei Song, the Chinese Chang Jiang Scholars Program Laureate with many good merits—such as his papers being published in Cell and other journals—and Prof. Hong-Bin Ji, the most promising young scientist who has had many papers published in Nature and Cancer Cell. Such a writing team consisting of so many outstanding scientists has given each chapter a better quality. Because all the writers are renowned scientists, they will certainly take responsibility for their own chapters.

Last, we would also like to express our appreciation to Senior Editorial Consultant Xiao-Zhan Gao for his contribution to the planning and coordination of the editorial work. His efforts helped expedite the progress of some stages leading to the publication of this monograph.

In summary, with all the great efforts of scientists from various fields of cancer research, we hope that we have provided an update on recent progress in some key areas of cancer research. We hope that this monograph will help our effort win the war against cancer.

Xin-Yuan Liu Sidney Pestka Yu-Fang Shi

List of Contributors

Ying Cai Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China

Xin Cao Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China

Chi-Hong Chao Department of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX

Kai-Xian Chen Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China

Kun Chen Cancer Institute, Zhejiang University, Hangzhou, People's Republic of China

Yi Chen Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China

Liang Chu Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China; Washington University in St. Louis, School of Medicine, St. Louis, MO

Jian Ding Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China

Miao Ding Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China

Zhen-Yu Ding Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, People's Republic of China

Qi Dong Cancer Institute, Zhejiang University, Hangzhou, People's Republic of China

xx List of Contributors

Jing Fan State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China

Jun-Kai Fan Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China

Erin M. Goldblatt Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA

Jin-Fa Gu Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China

Jennifer L. Hsu Department of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital, Taichung, Taiwan; Asia University, Taichung, Taiwan

He Huang Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China

Jing-Yu Huang First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China

Wenlin Huang State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China

Wen-Lin Huang Cancer Center, Sun Yat-sen University, Guangzhou, People's Republic of China

Mien-Chie Hung Department of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX; Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University and Hospital, Taichung, Taiwan; Asia University, Taichung, Taiwan

Hong-Bin Ji Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China

Jing Jiang State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China

Yu-Juan Jin Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China

List of Contributors xxi

Ronald G. Jubin UMDNJ-Robert Wood Johnson Medical School, Department of Molecular Genetics Microbiology and Immunology, Piscataway, NJ

Doranelly H. Koltchev UMDNJ-Robert Wood Johnson Medical School, Department of Molecular Genetics Microbiology and Immunology, Piscataway, NJ

Eva Lee Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA

Wen-Hwa Lee Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA

Cui-Ping Li Department of Transfusion, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Department of Transfusion, the Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, People's Republic of China

Huang-Guang Li Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China

Xiao Li Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, People's Republic of China

Anning Lin Ben May Department for Cancer Research, The University of Chicago, Chicago, IL

Hong Liu Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China

Hua Liu Cancer Biotherapy Research Laboratory, Zhong Shan Hospital, Fudan University, and Stem Cell Research Laboratory, Min Hang Hospital, Rui Jin Hospital Group, Jiao Tong University, Shanghai, People's Republic of China

Jing Liu Ben May Department for Cancer Research, The University of Chicago, Chicago, IL; Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL

Jing-Yuan Liu Department of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN

Leroy F. Liu Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School and The Cancer Institute of New Jersey, Piscataway, NJ

Lun-Xu Liu Department of Thoracic Surgery, West China Hospital, Chengdu, People's Republic of China

xxii List of Contributors

Qiang Liu Department of Breast Surgery, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, People's Republic of China; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA

Xin-Ran Liu Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China

Xin-Yuan Liu Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China; Hui-Yang Life Science and Technology Corp., Chengdu, People's Republic of China; Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China

Yao-Hua Liu Department of Pharmacology, Harbin Medical University, Harbin, People's Republic of China

Xin Lu Ludwig Institute for Cancer Research Oxford Branch, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK

You-Yong Lu Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute, Beijing, P.R. China

Xiao-Min Luo Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China

Yi Lisa Lyu Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School and The Cancer Institute of New Jersey, Piscataway, NJ

Lin Ma Department of Thoracic Surgery, West China Hospital, Chengdu, People's Republic of China

Ze-Hong Miao Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China

Wei Mo Department of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN

Yun-wei Ou State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China

Jian OuYang Department of Hematology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China

List of Contributors xxiii

Zhao-Hui Peng SiBiono Gene Therapy Institute, Shenzhen Hi-Tech Industrial Park, Shenzhen, People's Republic of China

Sidney Pestka UMDNJ-Robert Wood Johnson Medical School, Department of Molecular Genetics Microbiology and Immunology, Piscataway, NJ

Qi-Jun Qian Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China; Eastern Heptobiliary Hospital, Second Military Medical University, Shanghai, People's Republic of China

Song-Bo Qiu Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China; The University of Texas, MD Anderson Cancer Center, Houston, TX

Rong-guang Shao Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantan Xili, Beijing, People's Republic of China

Jie Shen Department of Radiation Oncology, Cancer Hospital and Cancer Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China

Er-Wei Song Department of Breast Surgery, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, People's Republic of China

Yong-mei Song State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China

Shi-Cheng Su Department of Breast Surgery, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, People's Republic of China

Yan Sun Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China

Wei Tang Department of Breast Surgery, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, People's Republic of China

Diane Vy UMDNJ-Robert Wood Johnson Medical School, Department of Molecular Genetics Microbiology and Immunology, Piscataway, NJ

Jian Wang Department of Urology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, People's Republic of China

xxiv List of Contributors

Jing-bo Wang Department of Radiation Oncology, Cancer Hospital and Cancer Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China

Li-Gang Wang Department of Pharmacology, Harbin Medical University, Harbin, People's Republic of China

Lu-hua Wang Department of Radiation Oncology, Cancer Hospital and Cancer Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China

Guang-Wen Wei Hui-Yang Life Science and Technology Corp., Chengdu, People's Republic of China

Na Wei Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China

Rui-Cheng Wei Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China

Yu-Quan Wei Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, People's Republic of China

Shuai Wu Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China

Zhi-Jiang Wu Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China

Tian Xiao Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China

Xiaoming Xie Department of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX; Department of Breast Oncology, Sun-Yat-Sen University Cancer Center, Guangzhou, People's Republic of China

Bin Xu Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China

List of Contributors xxv

Bao-Feng Yang Department of Pharmacology, Harbin Medical University, Harbin, People's Republic of China

Dong-Qin Yang Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China

Kai-tai Yao Oncological Institute, Southern Medical University, Guangzhou, People's Republic of China

Feng-Yan Yu Department of Breast Surgery, Sun-Yat-Sen Memorial Hospital, Sun-Yat-Sen University, Guangzhou, People's Republic of China

Yi-Xin Zeng State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China

Qi-min Zhan State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences, Beijing, People's Republic of China

Jian-Ting Zhang Department of Pharmacology and Toxicology and IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN

Kang-Jian Zhang Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China

Shu-Yuan Zhang Gaithersburg, MD, US

Su-Zhan Zhang Cancer Institute, Zhejiang University, Hangzhou, People's Republic of China

Yan-Hong Zhang Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China; Center for Comparative Oncology, University of California, Davis, CA

Zhen-Wei Zhang Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China; NorthShore University HealthSystem, University of Chicago, Evanston, IL

Zi-Lai Zhang Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China; Department of Developmental Biology, UT Southwestern Medical Center at Dallas, Dallas, TX

xxvi List of Contributors

Li-Li Zhao Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China; Lunan Pharmaceutical Group Corporation, Linyi City, Shandong Province, People's Republic of China

Shi-Guang Zhao Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China

Yong-su Zhen Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tiantan Xili, Beijing, People's Republic of China

Chao Zheng Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China

Shu Zheng Cancer Institute, Zhejiang University, Hangzhou, People's Republic of China

Jin Zhou Department of Pharmacology, Harbin Medical University, Harbin, People's Republic of China

Yong-Liang Zhu Cancer Institute, Zhejiang University, Hangzhou, People's Republic of China

Wei-Guo Zou Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China; Department of Immunology and Infection Disease, Harvard School of Public Health, Harvard University, Boston, MA

Ming Zuo Hui-Yang Life Science and Technology Corp., Chengdu, People's Republic of China

Contents

	eface st of (ontributors	xvii xix		
1	Cancer Biotherapy: Progress in China				
	Zher	Yu Ding and Yu-Quan Wei			
	1.1	Introduction	1		
	1.2	Immunotherapy	2		
		1.2.1 Cancer Vaccine	2		
		1.2.2 Cell Therapy	3		
		1.2.3 Antibody Therapy	8		
	1.3	Gene Therapy	11		
	1.4	Antiangiogenesis Therapy	19		
	1.5	Targeted Therapy	21		
2		er Targeting Gene-Viro-Therapy and Its Promising Future Yuan Liu, Wen-Lin Huang, Qi-Jun Qian, Wei-Guo Zou, Zi-Lai Zhang,	33		
		g Chu, Kang-Jian Zhang, Li-Li Zhao, Yan-Hong Zhang, Song-Bo Qiu,			
		-Wei Zhang, Tian Xiao, Jun-Kai Fan, Na Wei, Xin-Ran Liu, Xin Cao,			
		a Gu, Rui-Cheng Wei, Miao Ding, and Shuai Wu			
	2.1	Gene Therapy of Cancer	34		
		2.1.1 Introduction	34		
	2.2	Replicating Oncolytic Virus on Cancer Therapy	45		
	2.3	Cancer Targeting Gene-Viro-Therapy (CTGVT)	47		
		2.3.1 General Description of CTGVT	47		
	2.4	Modification of CTGVT	55		
		2.4.1 Cancer Targeting Dual Gene-Viro-Therapy	55		
		2.4.2 CTGVT with RNAi	63		
		2.4.3 CTGVT by Killing CSC	64		
		2.4.4 CTGVT for Tissue-Specific Cancer	67		
		2.4.5 CTGVT with Cytokine Armed Antibodies	68		
	2.5	Questions			
	26	6 Conclusion			

vi Contents

3	Relationship Between Antiproliferative Activities and Class I				
		C Surface Expression of Mouse Interferon Proteins on	-		
		-F10 Melanoma Cells	85		
		ald G. Jubin, Doranelly H. Koltchev, Diane Vy, and Sidney Pestka			
	3.1	Introduction	85		
	3.2	Materials and Methods	87		
		3.2.1 AP Assay	87		
		3.2.2 MHC I Up-Regulation	87		
	3.3	Results	88		
		3.3.1 AP Activity	88		
		3.3.2 MHC I Surface Expression	90		
	3.4	Discussion	91		
4	Mit	otic Regulator Hec1 as a Potential Target for Cancer Therapy	97		
	Erin	M. Goldblatt, Eva Lee and Wen-Hwa Lee			
	4.1	Cell Growth and Cancer	98		
	4.2	Mitotic Regulators as Cancer Therapy Targets	101		
	4.3	Discovery of Hec1, a Novel Protein in Mitotic Regulation	103		
	4.4	Development of Hec1 Inhibitors for Cancer Therapeutics	106		
	4.5	Conclusion	109		
5	Adv	rances in Liposome-Based Targeted Gene Therapy of Cancer	113		
		Jennifer L. Hsu, Chi-Hong Chao, Xiaoming Xie, and Mien-Chie Hung			
	5.1	Introduction	113		
	5.2	Cationic Liposome-Mediated Nonviral Gene Delivery	114		
	5.3				
		of Liposome-Mediated Gene Therapy	115		
		5.3.1 Modifications of Liposome Composition	115		
		5.3.2 Combinational Strategy for Liposome-Mediated			
		Gene Therapy	116		
	5.4	Improvement of Nonviral Gene Expression System	117		
	5.1	5.4.1 Cancer/Tissue-Specific Promoters	117		
		5.4.2 Two-Step Transcription Amplifier Module	120		
		5.4.3 VISA Expression Platform	120		
	5.5	Therapeutic Genes for Cancer Gene Therapy	121		
	5.5	5.5.1 p53	121		
		5.5.2 E1A	121		
		5.5.3 Bik 5.5.4 HSV-TK	123		
	5 6		124		
	5.6	Conclusion	124		
6	Rewiring the Intracellular Signaling Network in Cancer Jing Liu and Anning Lin				
	6.1	Introduction	125		
	6.2		135		
	0.2	The JNK Signaling Pathway	136		

Contents

	6.3	The NF-κB Signaling Pathway		136				
	6.4	The Negative Crosstalk Between NF-κB and JNK1 Wires						
			NF-α Signaling Circuitry for Cell Survival	137				
		6.4.1	The TNF-α Signaling Circuitry and Cell Death	137				
		6.4.2	The Crosstalk Between NF-KB and JNK Determines	No bereat				
			TNF-α Cytotoxicity	138				
		6.4.3	Multiple Mechanisms Are Involved in					
			NF-κB-Mediated Inhibition of TNF-α-Induced					
			Prolonged JNK Activation	139				
		6.4.4	Prolonged JNK1 Activation Contributes to					
			TNF-α-Induced Cell Death Through Elimination of					
			Caspase Inhibitor(S)	141				
	6.5		ositive Crosstalk Between NF-κB and JNK1 Wires					
			V Signaling Circuitry for Cell Death	142				
		6.5.1	The UV Signaling Circuitry and Cell Death	142				
		6.5.2	Augmentation of UV-Induced Rapid and Robust JNK					
			Activation by NF-κB Promotes UV-Induced Cell Death	142				
		6.5.3	The "Priming" Model in Which the Preexisting Nuclear					
			RelA/NF-κB via Induction of PKCδ to Promote					
		~ ~ 1	UV-Induced Cell Death	143				
		6.5.4	The RelA-PKCδ Axis May Be Involved in the Assembly					
			of UV-Induced JNK1 Signalsome	143				
		6.5.5	JNK1 Contributes to UV-Induced Cell Death Through					
		T	Promotion of both Cytoplasmic and Nuclear Death Events	144				
	6.6	Towai	rd Cell Signaling-Based Cancer Therapy	145				
7	Research and Development of Highly Potent Antibody-Based							
			ugates and Fusion Proteins for Cancer Therapy	153				
			g Shao and Yong-su Zhen					
	7.1		uction	153				
	7.2		AbDCs	154				
			mAb-Maytansinoid Drugs	155				
			mAb-Auristatin Drugs	159				
	7.0	7.2.3	mAb-Enediyne Drugs	161				
	7.3		sizing ADCs	163				
		7.3.1	Fragment mAb—Drug Conjugates	164				
	7.4	7.3.2	Engineered Antibody-Based Fusion Proteins	165				
	7.4	Concl	usion	167				
8	Can	cer Ste	em Cell	173				
	Qiang Liu, Feng-Yan Yu, Wei Tang, Shi-Cheng Su, and Er-Wei Song							
	8.1		luction	173				
	8.2		ry of CSC	175				
	8.3		oversy Over CSC	177				
	8.4	Origin	n of CSC	178				

	8.5	Pivotal Signaling Pathways in CSCs	180
		8.5.1 Wnt Pathway	181
		8.5.2 Hedgehog Pathway	181
		8.5.3 Notch Pathway	182
		8.5.4 Pathways Related with Cancer Therapy	182
		8.5.5 Other Pathways	183
	8.6	CSCs and Metastasis	184
		8.6.1 Phenotype of CSCs Related to Metastasis	184
		8.6.2 Mechanism of Cancer Metastasis Regulated	
		by Niche	184
		8.6.3 CSC and EMT	185
		8.6.4 CSC and Angiogenesis	185
		8.6.5 Anoikis and Circulating Tumor Cells	186
	8.7	Cancer Therapies Targeting CSCs	186
		8.7.1 Targeting the Self-Renewal Ability	187
		8.7.2 Targeting Survival Pathways	187
		8.7.3 Targeting ABC Transporters	188
		8.7.4 Targeting Cell Surface Marker and the Interaction	
		with Niche	188
	8.8	Future Directions of CSC	188
9	p53: A Target and a Biomarker of Cancer Therapy?		
	Xin .		
	9.1	Introduction	197
	9.2	Can p53 Act as a Biomarker in Cancer Management	
		and Therapy?	200
		9.2.1 p53 Mutation Status and Cancer Management	200
		9.2.2 Clinical Implications of Serological Analysis	
	0.2	of Auto-Anti-p53 Antibodies	202
	9.3	p53-Based Cancer Therapy	203
		9.3.1 Increasing Wild-Type p53-Mediated Killing	203
	0.4	9.3.2 Utilizing Mutant p53 to Induce Cancer Cell Death	204
	9.4	What Can We Do to Accelerate p53-Based Cancer	205
		Management and Therapy?	207
10		ombinant Adenoviral-p53 Agent (Gendicine®): Quality	
		trol, Mechanism of Action, and Its Use for Treatment	
		Ialignant Tumors	215
		Yuan Zhang, You-Yong Lu, and Zhao-Hui Peng	
	10.1		215
	10.2		218
		10.2.1 Product Description	218
		10.2.2 Quality Control	219
	10.3		220
	10.4	Safety of Gendicine in Clinics	223