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Foreword

Perl’s object-oriented mechanism is classic prestidigitation. It takes a collection of Perl’s
existing non-OO features such as packages, references, hashes, arrays, subroutines,
and modules, and then—with nothing up its sleeve—-manages to conjure up fully func-
tional objects, classes, and methods. Seemingly out of nowhere.

That’s a great trick. It means you can build on your existing Perl knowledge and ease
your way into OO Perl development, without first needing to conquer a mountain of
new syntax or navigate an ocean of new techniques. It also means you can progressively
fine-tune OO Perl to meet your own needs, by selecting from the existing constructs
the one that best suits your task.

But there’s a problem. Since Perl co-opts packages, references, hashes, arrays, subrou-
tines, and modules as the basis of its OO mechanism, to use OO Perl you already need
to understand packages, references, hashes, arrays, subroutines, and modules.

And there’s the rub. The learning curve hasn’t been eliminated; it’s merely been pushed
back half a dozen steps.

So then: how are you going to learn everything you need to know about non-OO Perl
so you can start to learn everything you need to know about OO Perl?

This book is the answer. In the following pages, Randal draws on two decades of using
Perl, and four decades of watching Gilligan’s Island and Mr. Ed, to explain each of the
components of Perl that collectively underpin its OO features. And, better still, he then
goes on to show exactly how to combine those components to create useful classes and
objects.

Soifyou still feel like Gilligan when it comes to Perl’s objects, references, and modules,
this book is just what the Professor ordered.

And that’s straight from the horse’s mouth.

—Damian Conway, May 2003
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Preface

Almost 20 years ago (nearly an eternity in Internet time), Randal Schwartz wrote the
first edition of Learning Perl. In the intervening years, Perl itself has grown substantially
from a “cool” scripting language used primarily by Unix system administrators to a
robust object-oriented programming language that runs on practically every computing
platform known to mankind, and maybe some that aren’t.

Throughout its six editions, Learning Perl remained about the same size, around 300
pages, and continued to cover much of the same material to remain compact and ac-
cessible to the beginning programmer. But there is much more to learn about Perl.

Randal called the first edition of this book Learning Perl Objects, References, and Mod-
ules, and we renamed its update Intermediate Perl, but we like to think of it as just
Learning More Perl. This is the book that picks up where Learning Perl leaves off. We
show how to use Perl to write larger programs.

As in Learning Perl, we designed each chapter to be small enough to read in just an
hour or so. Each chapter ends with a series of exercises to help you practice what you've
just learned, and the answers are provided in the appendix for your reference. And, like
Learning Perl, we've developed the material in this book for use in a teaching
environment.

Unless we note otherwise, everything in this book applies equally well to Perl on any
platform, whether that is Unix, Linux, Windows ActivePer] from ActiveState, Straw-
berry Perl, or any other modern implementation of Perl. To use this book you just need
to be comfortable with the material in Learning Perl and have the ambition to go further.

After you finish this book, you will have seen most of the core Perl language concepts
thatyou’llneed. The next book in the series is Mastering Perl, which focuses on applying
what you already know to writing effective and robust Perl applications as well as
managing the Perl software development life cycle. '

At any point in your Perl career, you should also have Programming Perl, the (mostly)
definitive bible of the language.
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Structure of This Book

There are three major sections of this book. The first section deals with references,
which are the keys to complex data structures as well as to object-oriented program-
ming. The second section introduces objects and how Perl implements object-oriented
programming. The third and last section deals with Perl’s module structure, testing,
and the community infrastructure for distributing our work.

You should read this book from front to back, stopping to do the exercises. Each chapter
builds on preceding chapters, and we’ll assume that you know the material from those
chapters as we show new topics.

Chapter 1, Introduction
An introduction to the material.

Chapter 2, Using Modules
Use Perl’s core modules as well as modules from other people. We’re going to show
you how to create your own modules later in the book, but until we do you can
still use modules you already have.

Chapter 3, Intermediate Foundations
Pick up some intermediate Perl skills you'll need for the rest of the book.

Chapter 4, Introduction to References
Introduce a level of redirection to allow the same code to operate on different sets
of data.

Chapter 5, References and Scoping
Learn how Perl manages to keep track of pointers to data, and read an introduction
to anonymous data structures and autovivification.

Chapter 6, Manipulating Complex Data Structures
Create, access, and print arbitrarily deep and nested data structures including ar-
rays of arrays and hashes of hashes.

Chapter 7, Subroutine References
Capture behavior as an anonymous subroutine that you create dynamically and
execute later.

Chapter 8, Filehandle References
Store filehandles in scalar variables that you can easily pass around your program
or store in data structures.

Chapter 9, Regular Expression References
Compile regular expressions without immediately applying them, and use them as
building blocks for larger patterns.

Chapter 10, Practical Reference Tricks

Sorting complex operations, the Schwartzian Transform, and working with recur-
sively defined data.
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Chapter 11, Building Larger Programs

Build larger programs by separating code into separate files and namespaces.
Chapter 12, Creating Your Own Perl Distribution

Create a Perl distribution as your first step toward object-oriented programming,.
Chapter 13, Introduction to Objects

Work with classes, method calls, inheritance, and overriding.
Chapter 14, Introduction to Testing

Start to test your modules so you find problems with the code as you create it.
Chapter 15, Objects with Data

Add per instance data, including constructors, getters, and setters.
Chapter 16, Some Advanced Object Topics

Use multiple inheritance, automatic methods, and references to filehandles.

Chapter 17, Exporter
How use works, how we can decide what to export, and how we can create our
Oown import routines.
Chapter 18, Object Destruction
Add behavior to an object that is going away, including object persistence.
Chapter 19, Introduction to Moose
Moose is an object framework available on CPAN.
Chapter 20, Advanced Testing
Test complex aspects of code and metacode things such as documentation and
test coverage.
Chapter 21, Contributing to CPAN
Share your work with the world by uploading it to CPAN.
Appendix, Exercise Answers
Where to go to get answers.

Conventions Used in This Book

The following typographic conventions are used in this book:

Constant width
Used for function names, module names, filenames, environment variables, code
snippets, and other literal text

Italics
Used for emphasis and for new terms where they are defined
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Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you're reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Intermediate Perl by Randal L. Schwartz,
brian d foy, and Tom Phoenix. Copyright 2012 Randal L. Schwartz, brian d foy, and
Tom Phoenix, 978-1-449-39309-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
S ..» Safari Books Online (www.safaribooksonline.com) is an on-demand digital
rart library that delivers expert content in both book and video form from the

world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
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800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book where we list errata, examples, and any additional
information. You can access this page at:

http:/loreil ly/int-perl-2e
To comment or ask technical questions about this book, send an email to:
bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://'www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

From Randal. In the preface of the first edition of Learning Perl, 1 acknowledged the
Beaverton McMenamin’s Cedar Hills Pub! just down the street from my house for the
“rent-free booth-office space” while I wrote most of the draft on my Powerbook 140.
Well, like wearing your lucky socks every day when your favorite team is in the playoffs,
I wrote nearly all of this book (including these words) at the same brewpub, in hopes
that the light of success of the first book will shine on me twice. (As I update this preface
for the second edition, I can see that my lucky socks do indeed work!)

This McM’s has the same great local microbrew beer and greasy sandwiches, but
they’ve gotten rid of my favorite pizza bread, replacing it with new items like
marionberry cobbler (a local treat) and spicy jambalaya. (And they added two booths,
and put in some pool tables.) Also, instead of the Powerbook 140, I'm using a Titanium
Powerbook, with 1,000 times more disk space, 500 times more memory, and a 200-
times-faster CPU running a real Unix-based operating system (OS X) instead of the
limited MacOS. I also uploaded all of the draft sections (including this one) over my
144K cell-phone modem and emailed them directly to the reviewers, instead of having
to wait to rush home to my 9600-baud external modem and phone line. How times
have changed!

So, thanks once again to the staff of the McMenamin’s Cedar Hills Pub for the booth
space and the hospitality.

1. http://www.mcmenamins.com/
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Like the previous editions of Learning Perl, I also owe much of what I'm saying here
and how I'm saying it to the students of Stonehenge Consulting Services who have given
me immediate and precise feedback (by their glazed eyes and awkwardly constructed
questions) when I was exceeding the “huh?” factor threshold. With that feedback over
many dozens of presentations, I was able to keep refining and refactoring the materials
that paved the way for this book.

" Speaking of which, those materials started as a half-day “What’s new in Perl 5?” sum-
mary commissioned by Margie Levine of Silicon Graphics, in addition to my frequently
presented onsite four-day Llama course (targeted primarily for Perl Version 4 at the
time). Eventually, I got the idea to beef up those notes into a full course and enlisted
fellow Stonehenge presenter Joseph Hall for the task. (He’s the one that selected the
universe from which the examples are drawn.) Joseph developed a two-day course for
Stonehenge in parallel with his excellent Effective Perl Programming book (Addison-
Wesley Professional), which we then used as the course textbook (until now).

Other Stonehenge instructors have also dabbled a bit in the “Packages, References,
Objects, and Modules” course over the years, including Chip Salzenberg and Tad
McClellan. But the bulk of the recent changes have been the responsibility of my senior
trainer Tom Phoenix, who has been “Stonehenge employee of the month” so often that
[ may have to finally give up my preferred parking space.

Tom Phoenix contributed most exercises in this book and a timely set of review notes
during my writing process, including entire paragraphs for me to just insert in place of .
the drivel I had written. We work well as a team, both in the classroom and in our joint
writing efforts. It is for this effort that we’ve acknowledged Tom as a coauthor, but I'll
take direct blame for any parts of the book you end up hating; none of that could have
possibly been Tom’s fault.

And last but not least, a special thanks to brian d foy, who shepherded this book into
its second revision, and wrote most of the changes between the previous edition and
this edition.

A book is nothing without a subject and a distribution channel, and for that I must
acknowledge longtime associates Larry Wall and Tim O’Reilly. Thanks guys, for cre-
ating an industry that has paid for my essentials, discretionary purchases, and dreams
for nearly 20 years.

And, as always, a special thanks to Lyle and Jack for teaching me nearly everything 1
know about writing and convincing me that I was much more than a programmer who
might learn to write; I was also a writer who happened to know how to program. Thank
you.

And to you, the reader of this book, for whom I toiled away the countless hours while
sipping a cold microbrew and scarfing down a piece of incredible cheesecake, trying to
avoid spilling on my laptop keyboard: thank you for reading what I've written. I

xviii | Preface



sincerely hope I've contributed (in at least a small way) to your Perl proficiency. If you
ever meet me on the street, please say hi.2 I'd like that. Thank you.

From brian. | have to thank Randal first, since I learned Perl from the first edition of
Learning Perl, and learned the rest teaching the Llama and Alpaca courses for Stone-
henge Consulting. Teaching is often the best way to learn.

The most thanks has to go to the Perl community, the wonderfully rich and diverse
group of people who have made it a pleasure to work with the language and make the
tools, websites, and modules that make Perl so useful. Many people have contributed
indirectly to this book through my other work and discussions with them. There are
too many to list, but if you’ve ever done anything with Perl with me, there’s probably
a little of you in this book.

From Tom. First of all, thanks to the entire team at O'Reilly for helping us to bring this
book to fruition.

Thanks to my Stonehenge coworkers and the students I've worked with over the years,

and the people I've assisted on Usenet. Your ideas and suggestions have greatly im-
proved this material.

Especially deep thanks to my coauthor Randal for giving me freedom to explore teach-
ing this material in varied ways.

To my wife Jenna Padbury, thanks for being a cat person, and everything thereafter.

From all of us. Thanks to our reviewers for providing comments on the draft of this
book. Tom Christiansen did an amazing job not only correcting every technical prob-
lem he found, but also improving our writing quite a bit. This book is much better for
it. David Golden, a fellow PAUSE admin and CPAN toolchain hacker, helped quite a
bit in straightening out the details of the module release process. Several of the Moose
crowd, including Stevan Little, Curtis “Ovid” Poe, and Jesse Luehrs, kindly helped with
that chapter. Sawyer X, the current maintainer of Module: :Starter, helped tremen-
dously as we developed those parts of the book.

Thanks also to our many students who have let us know what parts of the course
material have needed improvement over the years. It’s because of you that we’re all so
proud of it today.

Thanks to the many Perl Mongers who have made us feel at home as we’ve visited your
cities. Let’s do it again sometime.

And finally, our sincerest thanks to our friend Larry Wall, for having the wisdom to
share his really cool and powerful toys with the rest of the world so that we can all get
our work done just a little bit faster, easier, and with more fun.

2. And yes, you can ask a Perl question at the same time. I don’t mind.
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