Perli#Ry (eng)

Intermediat

Perl

O,REILLY® Randal L. Schwartz,

% b k'Y HRit brian d foy & Tom Phoenix &

B IR

Perli# By o

Intermediate Perl

Randal L. Schwartz, brian d foy, Tom Phoenix

Beijing - Cambridge - Farnham - Kdln - Sebastopol - Tokyo
O’Reilly Media, Inc. 44 & # K 5 & a4t ik ik

RERFHRA

EHERBE (CIP) #i¥E

Perl ifffr: 3 2hR: #C/E)MEMA (Schwartz, RL.) |
(G (Foy, B.D.), () {E/E s (Phoenix, T.) #.—32
EIAS. —in: AHIASE IR, 20131

45 3. Intermediate Perl, 2E

ISBN 978-7-5641-3888-2

LOP- ILOWi— O @I I O Perl {E&
- Rl — 3 IV. © TP312

rp E AR A B 45 1 CIP Bdli & (2012) 55 273571

TLARARAL o) 5 1AL £ [AR
5. 10-2011-409 5

o

©2012 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O’Reilly Media, Inc. and Southeast University Press,
2013. Authorized reprint of the original English edition, 2011 O'Reilly Media, Inc., the owner of all rights
to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
¥ LR R d O'Reilly Media, Inc. # #2012,

FLH MG A B K F B A BB 2013, 3L ¥ Ep LAY R Ao 4K B A) ok BRAR A 4K B AR BY FT AT & —— O'Reilly
Media, Inc. 693 |

RALFT A . RIS @ F T, A5 44T R o Ao &S AR VTR X E),

Perl JEfT 45 “h (B2ENIR)
WIR % AT 4 KR
Hb Hb: U2 5 fi 4. 210096

ok A LH
4] Jik: http://www.seupress.com

HLF-#ff: . press@seupress.com

Efl Wil ;4% b il AR A BR 2+ A

It A, 787 E K x 980 =K 16 FFA

Ell k. 24.75

BE $. 485 ¢

iR W 2013481 A% 1R

Efl e 20134E 1 H 1 ik ENRI

15 4. ISBN 978-7-5641-3888-2

s #fr: 58.00 ¢ (HH)

At E A5 A ENAE I S m i, B SE A, BIE ((FH). 025-83791830

Foreword

Perl’s object-oriented mechanism is classic prestidigitation. It takes a collection of Perl’s
existing non-OO features such as packages, references, hashes, arrays, subroutines,
and modules, and then—with nothing up its sleeve—-manages to conjure up fully func-
tional objects, classes, and methods. Seemingly out of nowhere.

That’s a great trick. It means you can build on your existing Perl knowledge and ease
your way into OO Perl development, without first needing to conquer a mountain of
new syntax or navigate an ocean of new techniques. It also means you can progressively
fine-tune OO Perl to meet your own needs, by selecting from the existing constructs
the one that best suits your task.

But there’s a problem. Since Perl co-opts packages, references, hashes, arrays, subrou-
tines, and modules as the basis of its OO mechanism, to use OO Perl you already need
to understand packages, references, hashes, arrays, subroutines, and modules.

And there’s the rub. The learning curve hasn’t been eliminated; it’s merely been pushed
back half a dozen steps.

So then: how are you going to learn everything you need to know about non-OO Perl
so you can start to learn everything you need to know about OO Perl?

This book is the answer. In the following pages, Randal draws on two decades of using
Perl, and four decades of watching Gilligan’s Island and Mr. Ed, to explain each of the
components of Perl that collectively underpin its OO features. And, better still, he then
goes on to show exactly how to combine those components to create useful classes and
objects.

Soifyou still feel like Gilligan when it comes to Perl’s objects, references, and modules,
this book is just what the Professor ordered.

And that’s straight from the horse’s mouth.

—Damian Conway, May 2003

Xi

Preface

Almost 20 years ago (nearly an eternity in Internet time), Randal Schwartz wrote the
first edition of Learning Perl. In the intervening years, Perl itself has grown substantially
from a “cool” scripting language used primarily by Unix system administrators to a
robust object-oriented programming language that runs on practically every computing
platform known to mankind, and maybe some that aren’t.

Throughout its six editions, Learning Perl remained about the same size, around 300
pages, and continued to cover much of the same material to remain compact and ac-
cessible to the beginning programmer. But there is much more to learn about Perl.

Randal called the first edition of this book Learning Perl Objects, References, and Mod-
ules, and we renamed its update Intermediate Perl, but we like to think of it as just
Learning More Perl. This is the book that picks up where Learning Perl leaves off. We
show how to use Perl to write larger programs.

As in Learning Perl, we designed each chapter to be small enough to read in just an
hour or so. Each chapter ends with a series of exercises to help you practice what you've
just learned, and the answers are provided in the appendix for your reference. And, like
Learning Perl, we've developed the material in this book for use in a teaching
environment.

Unless we note otherwise, everything in this book applies equally well to Perl on any
platform, whether that is Unix, Linux, Windows ActivePer] from ActiveState, Straw-
berry Perl, or any other modern implementation of Perl. To use this book you just need
to be comfortable with the material in Learning Perl and have the ambition to go further.

After you finish this book, you will have seen most of the core Perl language concepts
thatyou’llneed. The next book in the series is Mastering Perl, which focuses on applying
what you already know to writing effective and robust Perl applications as well as
managing the Perl software development life cycle. '

At any point in your Perl career, you should also have Programming Perl, the (mostly)
definitive bible of the language.

xiii

Structure of This Book

There are three major sections of this book. The first section deals with references,
which are the keys to complex data structures as well as to object-oriented program-
ming. The second section introduces objects and how Perl implements object-oriented
programming. The third and last section deals with Perl’s module structure, testing,
and the community infrastructure for distributing our work.

You should read this book from front to back, stopping to do the exercises. Each chapter
builds on preceding chapters, and we’ll assume that you know the material from those
chapters as we show new topics.

Chapter 1, Introduction
An introduction to the material.

Chapter 2, Using Modules
Use Perl’s core modules as well as modules from other people. We’re going to show
you how to create your own modules later in the book, but until we do you can
still use modules you already have.

Chapter 3, Intermediate Foundations
Pick up some intermediate Perl skills you'll need for the rest of the book.

Chapter 4, Introduction to References
Introduce a level of redirection to allow the same code to operate on different sets
of data.

Chapter 5, References and Scoping
Learn how Perl manages to keep track of pointers to data, and read an introduction
to anonymous data structures and autovivification.

Chapter 6, Manipulating Complex Data Structures
Create, access, and print arbitrarily deep and nested data structures including ar-
rays of arrays and hashes of hashes.

Chapter 7, Subroutine References
Capture behavior as an anonymous subroutine that you create dynamically and
execute later.

Chapter 8, Filehandle References
Store filehandles in scalar variables that you can easily pass around your program
or store in data structures.

Chapter 9, Regular Expression References
Compile regular expressions without immediately applying them, and use them as
building blocks for larger patterns.

Chapter 10, Practical Reference Tricks

Sorting complex operations, the Schwartzian Transform, and working with recur-
sively defined data.

xiv | Preface

Chapter 11, Building Larger Programs

Build larger programs by separating code into separate files and namespaces.
Chapter 12, Creating Your Own Perl Distribution

Create a Perl distribution as your first step toward object-oriented programming,.
Chapter 13, Introduction to Objects

Work with classes, method calls, inheritance, and overriding.
Chapter 14, Introduction to Testing

Start to test your modules so you find problems with the code as you create it.
Chapter 15, Objects with Data

Add per instance data, including constructors, getters, and setters.
Chapter 16, Some Advanced Object Topics

Use multiple inheritance, automatic methods, and references to filehandles.

Chapter 17, Exporter
How use works, how we can decide what to export, and how we can create our
Oown import routines.
Chapter 18, Object Destruction
Add behavior to an object that is going away, including object persistence.
Chapter 19, Introduction to Moose
Moose is an object framework available on CPAN.
Chapter 20, Advanced Testing
Test complex aspects of code and metacode things such as documentation and
test coverage.
Chapter 21, Contributing to CPAN
Share your work with the world by uploading it to CPAN.
Appendix, Exercise Answers
Where to go to get answers.

Conventions Used in This Book

The following typographic conventions are used in this book:

Constant width
Used for function names, module names, filenames, environment variables, code
snippets, and other literal text

Italics
Used for emphasis and for new terms where they are defined

Preface | xv

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you're reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Intermediate Perl by Randal L. Schwartz,
brian d foy, and Tom Phoenix. Copyright 2012 Randal L. Schwartz, brian d foy, and
Tom Phoenix, 978-1-449-39309-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
S ..» Safari Books Online (www.safaribooksonline.com) is an on-demand digital
rart library that delivers expert content in both book and video form from the

world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

xvi | Preface

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book where we list errata, examples, and any additional
information. You can access this page at:

http:/loreil ly/int-perl-2e
To comment or ask technical questions about this book, send an email to:
bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://'www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

From Randal. In the preface of the first edition of Learning Perl, 1 acknowledged the
Beaverton McMenamin’s Cedar Hills Pub! just down the street from my house for the
“rent-free booth-office space” while I wrote most of the draft on my Powerbook 140.
Well, like wearing your lucky socks every day when your favorite team is in the playoffs,
I wrote nearly all of this book (including these words) at the same brewpub, in hopes
that the light of success of the first book will shine on me twice. (As I update this preface
for the second edition, I can see that my lucky socks do indeed work!)

This McM’s has the same great local microbrew beer and greasy sandwiches, but
they’ve gotten rid of my favorite pizza bread, replacing it with new items like
marionberry cobbler (a local treat) and spicy jambalaya. (And they added two booths,
and put in some pool tables.) Also, instead of the Powerbook 140, I'm using a Titanium
Powerbook, with 1,000 times more disk space, 500 times more memory, and a 200-
times-faster CPU running a real Unix-based operating system (OS X) instead of the
limited MacOS. I also uploaded all of the draft sections (including this one) over my
144K cell-phone modem and emailed them directly to the reviewers, instead of having
to wait to rush home to my 9600-baud external modem and phone line. How times
have changed!

So, thanks once again to the staff of the McMenamin’s Cedar Hills Pub for the booth
space and the hospitality.

1. http://www.mcmenamins.com/

Preface | xvii

Like the previous editions of Learning Perl, I also owe much of what I'm saying here
and how I'm saying it to the students of Stonehenge Consulting Services who have given
me immediate and precise feedback (by their glazed eyes and awkwardly constructed
questions) when I was exceeding the “huh?” factor threshold. With that feedback over
many dozens of presentations, I was able to keep refining and refactoring the materials
that paved the way for this book.

" Speaking of which, those materials started as a half-day “What’s new in Perl 5?” sum-
mary commissioned by Margie Levine of Silicon Graphics, in addition to my frequently
presented onsite four-day Llama course (targeted primarily for Perl Version 4 at the
time). Eventually, I got the idea to beef up those notes into a full course and enlisted
fellow Stonehenge presenter Joseph Hall for the task. (He’s the one that selected the
universe from which the examples are drawn.) Joseph developed a two-day course for
Stonehenge in parallel with his excellent Effective Perl Programming book (Addison-
Wesley Professional), which we then used as the course textbook (until now).

Other Stonehenge instructors have also dabbled a bit in the “Packages, References,
Objects, and Modules” course over the years, including Chip Salzenberg and Tad
McClellan. But the bulk of the recent changes have been the responsibility of my senior
trainer Tom Phoenix, who has been “Stonehenge employee of the month” so often that
[may have to finally give up my preferred parking space.

Tom Phoenix contributed most exercises in this book and a timely set of review notes
during my writing process, including entire paragraphs for me to just insert in place of .
the drivel I had written. We work well as a team, both in the classroom and in our joint
writing efforts. It is for this effort that we’ve acknowledged Tom as a coauthor, but I'll
take direct blame for any parts of the book you end up hating; none of that could have
possibly been Tom’s fault.

And last but not least, a special thanks to brian d foy, who shepherded this book into
its second revision, and wrote most of the changes between the previous edition and
this edition.

A book is nothing without a subject and a distribution channel, and for that I must
acknowledge longtime associates Larry Wall and Tim O’Reilly. Thanks guys, for cre-
ating an industry that has paid for my essentials, discretionary purchases, and dreams
for nearly 20 years.

And, as always, a special thanks to Lyle and Jack for teaching me nearly everything 1
know about writing and convincing me that I was much more than a programmer who
might learn to write; I was also a writer who happened to know how to program. Thank
you.

And to you, the reader of this book, for whom I toiled away the countless hours while
sipping a cold microbrew and scarfing down a piece of incredible cheesecake, trying to
avoid spilling on my laptop keyboard: thank you for reading what I've written. I

xviii | Preface

sincerely hope I've contributed (in at least a small way) to your Perl proficiency. If you
ever meet me on the street, please say hi.2 I'd like that. Thank you.

From brian. | have to thank Randal first, since I learned Perl from the first edition of
Learning Perl, and learned the rest teaching the Llama and Alpaca courses for Stone-
henge Consulting. Teaching is often the best way to learn.

The most thanks has to go to the Perl community, the wonderfully rich and diverse
group of people who have made it a pleasure to work with the language and make the
tools, websites, and modules that make Perl so useful. Many people have contributed
indirectly to this book through my other work and discussions with them. There are
too many to list, but if you’ve ever done anything with Perl with me, there’s probably
a little of you in this book.

From Tom. First of all, thanks to the entire team at O'Reilly for helping us to bring this
book to fruition.

Thanks to my Stonehenge coworkers and the students I've worked with over the years,

and the people I've assisted on Usenet. Your ideas and suggestions have greatly im-
proved this material.

Especially deep thanks to my coauthor Randal for giving me freedom to explore teach-
ing this material in varied ways.

To my wife Jenna Padbury, thanks for being a cat person, and everything thereafter.

From all of us. Thanks to our reviewers for providing comments on the draft of this
book. Tom Christiansen did an amazing job not only correcting every technical prob-
lem he found, but also improving our writing quite a bit. This book is much better for
it. David Golden, a fellow PAUSE admin and CPAN toolchain hacker, helped quite a
bit in straightening out the details of the module release process. Several of the Moose
crowd, including Stevan Little, Curtis “Ovid” Poe, and Jesse Luehrs, kindly helped with
that chapter. Sawyer X, the current maintainer of Module: :Starter, helped tremen-
dously as we developed those parts of the book.

Thanks also to our many students who have let us know what parts of the course
material have needed improvement over the years. It’s because of you that we’re all so
proud of it today.

Thanks to the many Perl Mongers who have made us feel at home as we’ve visited your
cities. Let’s do it again sometime.

And finally, our sincerest thanks to our friend Larry Wall, for having the wisdom to
share his really cool and powerful toys with the rest of the world so that we can all get
our work done just a little bit faster, easier, and with more fun.

2. And yes, you can ask a Perl question at the same time. I don’t mind.

Preface | xix

Foreword

Preface

1.

Table of Contents

Introduction ettt e e

What Should You Know Already?
strict and warnings
Perl v5.14

A Note on Versions
What About All Those Footnotes?
What’s With the Exercises?
How to Get Help
What If I'm a Perl Course Instructor?
Exercises

Using MotISles < . v s mwim coms ms 058 w5 5 06 085 08 w0 4 550 5 50 5.0 5 e § i i

The Standard Distribution
Exploring CPAN
Using Modules
Functional Interfaces
Selecting What to Import
Object-Oriented Interfaces
A More Typical Object-Oriented Module: Math::Biglnt
Fancier Output with Modules
What’s in Core?
The Comprehensive Perl Archive Network
Installing Modules from CPAN
CPANminus
Installing Modules Manually
Setting the Path at the Right Time
Setting the Path Outside the Program

(o R R T e o o A W

Extending @INC with PERLSLIB 21

Extending @INC on the Command Line 22
local::lib 22
Exercises 23

3. Intermediate Foundations ... 25
List Operators 25

List Filtering with grep 26

Transforming Lists with map 28
Trapping Errors with eval 29
Dynamic Code with eval 31
The do Block 32
Exercises 33

4. Introduction TORETreNTES v.u . vis s wie s e e ms v e wm s siw s 0w w00 2 010 wins 360> i 35
Doing the Same Task on Many Arrays 35
PeGS: Perl Graphical Structures 37
Taking a Reference to an Array 38
Dereferencing the Array Reference 41
Getting Our Braces Off 42
Modifying the Array 43
Nested Data Structures 44
Simplifying Nested Element References with Arrows 45
References to Hashes 47
Checking Reference Types 50
Exercises 52

5. Referencesand SCOPINGcuveriiniiniiii i iiieeeeaans 53
More than One Reference to Data 53
What If That Was the Name? 54
Reference Counting and Nested Data Structures 55
When Reference Counting Goes Bad 57
Creating an Anonymous Array Directly 59
Creating an Anonymous Hash 61
Autovivification 63
Autovivification and Hashes 66
Exercises 68

6. Manipulating Complex Data Structuresc.covvviiiiieinniniennnnnns Al
Using the Debugger to View Complex Data 71
Viewing Complex Data with Data::Dumper 75

Other Dumpers 77
Marshalling Data 78

iv | Table of Contents

Storing Complex Data with Storable 80

YAML 85
JSON 85
Using the map and grep Operators 86
Applying a Bit of Indirection 86
Selecting and Altering Complex Data 88
Exercises 90
Subroutine REferences: . « cousissssssmoms o emsnmsvimmvussvssssneeneossams 91
Referencing a Named Subroutine 91
Anonymous Subroutines 96
Callbacks 97
Closures 98
Returning a Subroutine from a Subroutine 100
Closure Variables as Inputs 103
Closure Variables as Static Local Variables 104
state Variables 105
Finding Out Who We Are 107
Enchanting Subroutines 108
Dumping Closures 111
Exercise 112
Filehandle Referencesoooiiiiiiiiiiiii 115
The Old Way 115
The Improved Way 116
Filehandles to Strings 118
Processing Strings Line by Line 119
Collections of Filehandles 120
10::Handle and Friends 121
[0::File 121
10::Scalar 122
[0::Tee 123
10::Pipe 124
10::Null and 10::Interactive 125
Directory Handles 126
Directory Handle References 126
Exercises 127
Regular Expression Referencesccoviiiiiiiiiniiiiiininneenens 129
Before Regular Expression References 129
Precompiled Patterns 131
Regular Expression Options 132
Applying Regex References 132

Table of Contents | v

10.

1.

12.

Regexes as Scalars
Build Up Regular Expressions
Regex-Creating Modules
Using Common Patterns
Assembling Regular Expressions
Exercises

Practical Reference Tricksoovvvvrininninenennnnnns

Fancier Sorting

Sorting with Indices
Sorting Efficiently

The Schwartzian Transform

Multilevel Sort with the Schwartzian Transform

Recursively Defined Data
Building Recursively Defined Data
Displaying Recursively Defined Data
Avoiding Recursion

The Breadth-First Solution
Exercises

Building Larger Programsccccvvvvinnnnnn.

The Cure for the Common Code
Inserting Code with eval

Using do

Using require

The Problem of Namespace Collisions
Packages as Namespace Separators
Scope of a Package Directive

Packages and Lexicals

Package Blocks

Exercises

Creating Your Own Perl Distribution

Perl’s Two Build Systems
Inside Makefile.PL
Inside Build.PL
Our First Distribution
h2xs
Module::Starter
Custom Templates
Inside Your Perl Distribution
The META File
Adding Additional Modules

133
136
137
137
139
140

141
141
143
144
145
147
147
149
152
153
154
156

159
159
160
161
163
164
165
167
168
169
170

173
173
174
175
176
176
177
178
178
180
181

vi | Table of Contents

13.

14.

Inside a Module
Plain OI' Documentation
Pod Command Paragraphs
Pod Paragraphs
Pod Formatting Codes
Checking the Pod Format
The Module Code
Module Building Summary
Creating a Module::Build Distribution
Creating a ExtUtils::Makemaker Distribution
Exercises

Introduction to Objectsc.ooiiviiinnn.

If We Could Talk to the Animals. . .
Introducing the Method Invocation Arrow
The Extra Parameter of Method Invocation
Calling a Second Method to Simplity Things
A Few Notes About @ISA

Overriding the Methods

Starting the Search from a Ditterent Place
The SUPER Way of Doing Things

What to Do with (@_

Where We Are

Our Barnyard Summary

Exercises

Intraduction S0 TESHING « s « s s ois s o5 w s 51w 5w e 506 w15 ma wws

Why Should We Test?
The Perl Testing Process
Test Anywhere Protocol
The Art of Testing
A Test Example
The Test Harness
The Standard Tests
Checking that Modules Compile
The Boilerplate Tests
The Pod Tests
Adding Our First Tests
Measuring Our Test Coverage
Subroutine Coverage
Statement Coverage
Branch Coverage
Conditional Coverage

182
184
185
186
186
187
187
188
188
189
189

.................. 191

191
193
194
195
197
198
200
200
201
201
202
203

.................. 205

205
206
206
208
209
210
211
212
213
216
217
220
221
221
221
222

Table of Contents | vii

Exercises 222

15. ObjectswithDataccovviiiiiiiiiininnnnnns iamve s am e s ma e . 225
A Horse Is a Horse, of Course of Course—Or Is It? 225
Invoking an Instance Method 227
Accessing the Instance Data 228
How to Build a Horse 228
‘Inheriting the Constructor 229
Making a Method Work with Either Classes or Instances 230
Adding Parameters to a Method 230
More Interesting Instances 231
A Horse of a Different Color 232
Getting Our Deposit Back 233
Don’t Look Inside the Box 234
Faster Getters and Setters 235
Getters that Double as Setters 236
Restricting a Method to Class Only or Instance Only 236
Exercise 237

16. Some Advanced Object TOPICS ...ovvevneriiieinieieneeneerereneennens 239
UNIVERSAL Methods 239
Testing Our Objects for Good Behavior 240
The Last Resort 242
Using AUTOLOAD for Accessors 243
Creating Getters and Setters More Easily 244
Multiple Inheritance 246
Exercises 247

L R {1 - 249
What use Is Doing 249
Importing with Exporter 250
@EXPORT and @EXPORT_OK 251
Grouping with %EXPORT_TAGS 252
Custom Import Routines 254
Exercises 256

18. Object Destruction bioce fim #1804 wim 0wy 0w s 3y wiess w0 e wow ok ik 8 257
Cleaning Up After Ourselves 257
Nested Object Destruction 259
Beating a Dead Horse 262
Indirect Object Notation 263
Additional Instance Variables in Subclasses 265
Using Class Variables 267

viii | Table of Contents

