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“AMABEZHEHE R RR GRS TR, RALRETALANEAERTAY.”

—George Forsythe, What to do till the computer scientist comes, 1968
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New to the Third Edition

®  Reordering of chapters to introduce decrease-and-conquer before divide-
and-conquer

B  Restructuring of chapter 8 on dynamic programming, including all new intro-
ductory material and new exercises focusing on well-known applications
®  More coverage of the applications of the algorithms discussed

® Reordering of select sections throughout the book to achieve a better align-
ment of specific algorithms and general algorithm design techniques

®  Addition of the Lomuto partition and Gray code algorithms

® Seventy new problems added to the end-of-chapter exercises, including algo-
rithmic puzzles and questions asked during job interviews

xvii



Preface

The most valuable acquisitions in a scientific or technical education are the
general-purpose mental tools which remain serviceable for a life-time.

—George Forsythe, “What to do till the computer scientist comes.” (1968)

lgorithms play the central role both in the science and practice of computing.

Recognition of this fact has led to the appearance of a considerable number
of textbooks on the subject. By and large, they follow one of two alternatives
in presenting algorithms. One classifies algorithms according to a problem type.
Such a book would have separate chapters on algorithms for sorting, searching,
graphs, and so on. The advantage of this approach is that it allows an immediate
comparison of, say, the efficiency of different algorithms for the same problem.
The drawback of this approach is that it emphasizes problem types at the expense
of algorithm design techniques.

The second alternative organizes the presentation around algorithm design
techniques. In this organization, algorithms from different areas of computing are
grouped together if they have the same design approach. I share the belief of many
(e.g., [BaY95]) that this organization is more appropriate for a basic course on the
design and analysis of algorithms. There are three principal reasons for emphasis
on algorithm design techniques. First, these techniques provide a student with
tools for designing algorithms for new problems. This makes learning algorithm
design techniques a very valuable endeavor from a practical standpoint. Second,
they seek to classify multitudes of known algorithms according to an underlying
design idea. Learning to see such commonality among algorithms from different
application areas should be a major goal of computer science education. After all,
every science considers classification of its principal subject as a major if not the
central point of its discipline. Third, in my opinion, algorithm design techniques
have utility as general problem solving strategies, applicable to problems beyond
computing.

Xix
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Unfortunately, the traditional classification of algorithm design techniques
has several serious shortcomings, from both theoretical and educational points
of view. The most significant of these shortcomings is the failure to classify many
important algorithms. This limitation has forced the authors of other textbooks
to depart from the design technique organization and to include chapters dealing
with specific problem types. Such a switch leads to a loss of course coherence and
almost unavoidably creates a confusion in students’ minds.

New taxonomy of algorithm design techniques

My frustration with the shortcomings of the traditional classification of algorithm
design techniques has motivated me to develop a new taxonomy of them [Lev99],
which is the basis of this book. Here are the principal advantages of the new
taxonomy:

B The new taxonomy is more comprehensive than the traditional one. It includes
several strategies—brute-force, decrease-and-conquer, transform-and-con-
quer, space and time trade-offs, and iterative improvement—that are rarely
if ever recognized as important design paradigms.

® The new taxonomy covers naturally many classic algorithms (Euclid’s algo-
rithm, heapsort, search trees, hashing, topological sorting, Gaussian elimi-
nation, Horner’s rule—to name a few) that the traditional taxonomy cannot
classify. As a result, the new taxonomy makes it possible to present the stan-
dard body of classic algorithms in a unified and coherent fashion.

® ]t naturally accommodates the existence of important varieties of several
design techniques. For example, it recognizes three variations of decrease-
and-conquer and three variations of transform-and-conquer.

® [t is better aligned with analytical methods for the efficiency analysis (see
Appendix B).

Design techniques as general problem solving strategies

Most applications of the design techniques in the book are to classic problems of
computer science. (The only innovation here is an inclusion of some material on
numerical algorithms, which are covered within the same general framework.)
But these design techniques can be considered general problem solving tools,
whose applications are not limited to traditional computing and mathematical
problems. Two factors make this point particularly important. First, more and
more computing applications go beyond the traditional domain, and there are
reasons to believe that this trend will strengthen in the future. Second, developing
students’ problem solving skills has come to be recognized as a major goal of
college education. Among all the courses in a computer science curriculum, a
course on the design and analysis of algorithms is uniquely suitable for this task
because it can offer a student specific strategies for solving problems.

I am not proposing that a course on the design and analysis of algorithms
should become a course on general problem solving. But I do believe that the



Preface xxXi

unique opportunity provided by studying the design and analysis of algorithms
should not be missed. Toward this goal, the book includes applications to puzzles
and puzzle-like games. Although using puzzles in teaching algorithms is certainly
not a new idea, the book tries to do this systematically by going well beyond a few
standard examples.

Textbook pedagogy

My goal was to write a text that would not trivialize the subject but would still be
readable by most students on their own. Here are some of the things done toward
this objective.

®  Sharing the opinion of George Forsythe expressed in the epigraph, I have
sought to stress major ideas underlying the design and analysis of algorithms.
In choosing specific algorithms to illustrate these ideas, I limited the number of
covered algorithms to those that demonstrate an underlying design technique
or an analysis method most clearly. Fortunately, most classic algorithms satisfy
this criterion.

® In Chapter 2, which is devoted to efficiency analysis, the methods used for
analyzing nonrecursive algorithms are separated from those typically used for
analyzing recursive algorithms. The chapter also includes sections devoted to
empirical analysis and algorithm visualization.

®  The narrative is systematically interrupted by questions to the reader. Some
of them are asked rhetorically, in anticipation of a concern or doubt, and are
answered immediately. The goal of the others is to prevent the reader from
drifting through the text without a satisfactory level of comprehension.

®  Each chapter ends with a summary recapping the most important concepts
and results discussed in the chapter.

®  The book contains over 600 exercises. Some of them are drills; others make
important points about the material covered in the body of the text or intro-
duce algorithms not covered there at all. A few exercises take advantage of
Internet resources. More difficult problems—there are not many of them—
are marked by special symbols in the Instructor’s Manual. (Because marking
problems as difficult may discourage some students from trying to tackle them,
problems are not marked in the book itself.) Puzzles, games, and puzzle-like
questions are marked in the exercises with a special icon.

®  The book provides hints to all the exercises. Detailed solutions, except for
programming projects, are provided in the Instructor’s Manual, available
to qualified adopters through Pearson’s Instructor Resource Center. (Please
contact your local Pearson sales representative or go to www.pearsonhighered
.com/irc to access this material.) Slides in PowerPoint are available to all
readers of this book via anonymous ftp at the CS Support site: http://cssupport
.pearsoncmg.com/.
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Changes for the third edition

There are a few changesin the third edition. The most important is the new order of
the chapters on decrease-and-conquer and divide-and-conquer. There are several
advantages in introducing decrease-and-conquer before divide-and-conquer:

®  Decrease-and-conquer is a simpler strategy than divide-and-conquer.

B Decrease-and-conquer is applicable to more problems than divide-and-con-
quer.

B The new order makes it possible to discuss insertion sort before mergesort
and quicksort.

®  The idea of array partitioning is now introduced in conjunction with the
selection problem. I took advantage of an opportunity to do this via the one-
directional scan employed by Lomuto’s algorithm, leaving the two-directional

scan used by Hoare’s partitioning to a later discussion in conjunction with
quicksort.

B Binary search is now considered in the section devoted to decrease-by-a-
constant-factor algorithms, where it belongs.

The second important change is restructuring of Chapter 8 on dynamic pro-
gramming. Specifically:

®  The introductory section is completely new. It contains three basic examples
that provide a much better introduction to this important technique than
computing a binomial coefficient, the example used in the first two editions.

®  All the exercises for Section 8.1 are new as well; they include well-known
applications not available in the previous editions.

® T alsochanged the order of the other sections in this chapter to get a smoother
progression from the simpler applications to the more advanced ones.

The other changes include the following. More applications of the algorithms
discussed are included. The section on the graph-traversal algorithms is moved
from the decrease-and-conquer chapter to the brute-force and exhaustive-search
chapter, where it fits better, in my opinion. The Gray code algorithm is added to the
section dealing with algorithms for generating combinatorial objects. The divide-
and-conquer algorithm for the closest-pair problem is discussed in more detail.
Updates include the section on algorithm visualization, approximation algorithms
for the traveling salesman problem, and, of course, the bibliography.

I also added about 70 new problems to the exercises. Some of them are algo-
rithmic puzzles and questions asked during job interviews.

Prerequisites

The book assumes that a reader has gone through an introductory programming
course and a standard course on discrete structures. With such a background,
he or she should be able to handle the book’s material without undue difficulty.
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Still, fundamental data structures, necessary summation formulas, and recurrence
relations are reviewed in Section 1.4, Appendix A, and Appendix B, respectively.
Calculus is used in only three sections (Section 2.2, 11.4, and 12.4), and to a very
limited degree; if students lack calculus as an assured part of their background, the
relevant portions of these three sections can be omitted without hindering their
understanding of the rest of the material.

Use in the curriculum

The book can serve as a textbook for a basic course on design and analysis of
algorithms organized around algorithm design techniques. It might contain slightly
more material than can be covered in a typical one-semester course. By and large,
portions of Chapters 3 through 12 can be skipped without the danger of making
later parts of the book incomprehensible to the reader. Any portion of the book
can be assigned for self-study. In particular, Sections 2.6 and 2.7 on empirical
analysis and algorithm visualization, respectively, can be assigned in conjunction
with projects.

Here is a possible plan for a one-semester course; it assumes a 40-class meeting
format.

Lecture  Topic Sections
1 Introduction 1.1-13
2,3 Analysis framework; O, Q, © notations 21,22
4 Mathematical analysis of nonrecursive algorithms 23
5,6 Mathematical analysis of recursive algorithms 24,25 (+ App. B)
7 Brute-force algorithms 3.1,32(+3.3)
8 Exhaustive search 34
9 Depth-first search and breadth-first search 35
10, 11 Decrease-by-one: insertion sort, topological sorting 41,42
12 Binary search and other decrease-by-a-constant- 44
factor algorithms
13 Variable-size-decrease algorithms 45
14,15 Divide-and-conquer: mergesort, quicksort 5.1-5.2
16 Other divide-and-conquer examples 53or54o0r55
17-19 Instance simplification: presorting, Gaussian elimi- 6.1-6.3
nation, balanced search trees
20 Representation change: heaps and heapsort or 6.4 or 6.5
Horner’s rule and binary exponentiation
21 Problem reduction 6.6
22-24 Space-time trade-offs: string matching, hashing, B- 7.2-7.4
trees
25-27 Dynamic programming algorithms 3 from 8.1-8.4
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28-30 Greedy algorithms: Prim’s, Kruskal’s, Dijkstra’s, 9.1-94
Huffman’s

31-33 Iterative improvement algorithms 3 from 10.1-10.4

34 Lower-bound arguments 11.1

35 Decision trees 11.2

36 P, NP, and NP-complete problems 11.3

37 Numerical algorithms 11.4 (+ 12.4)

38 Backtracking 121

39 Branch-and-bound 12.2

40 Approximation algorithms for NP-hard problems 123
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