PEARSON |

Introduction to the Design and Anal'ysis of

A|gOr|th IMS Third Edition

Wikt 55T E

(55 3hR 2 EN AR

(2£) Anany Levitin #

ithme A

L “\QO‘ . rOp 4y
O (I Mgy,

. . : 3 / ‘
! 0(\\\.(\ \ 0(\thm C}")‘)r;gs " Q@ 90'
P*.“@e we Algorithy, 9o
ot W An
o queligame Arrop, .

. O o 5h : On 9y, P
(OQ\'\f).)z@ 73 IRE m9°ru,, - "{9°°§;\‘ g O, {9°

M g,
B TORME ¢ .
W O\Q,o{\&__«\%:{%ﬁnofilhme A ,,e SN ‘o . Mlgoritmo

e B Tl s 0

T = M &)
s ;l;”opwm Rlgort™®
%ritmo AnropV

T PEARSON

HiE w5 0t 2
3R BER)

(£) Anany Levitin %

T2 N
K}&ﬁf«'# 7’}“‘}}
\t‘)‘\.h’b ahu 2&39\

e

SHEEREF HARTT

It =

Original edition, entitled: INTRODUCTION TO THE DESIGN AND ANALYSIS OF ALGORITHMS, 3E,
9780132316811 by ANANY LEVITIN, Published by Pearson Education, Inc., publishing as Addison-Wesley,
Copyright © 2012 Pearson Education, Inc.

All rights reserved.

No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical,

including photocopying, recording or by any information storage retrieval system, without permission from Pearson
Education, Inc.

China edition published by PEARSON EDUCATION ASIA LTD., and TSINGHUA UNIVERSITY PRESS
LIMITED Copyright © 2013.

This edition is manufactured in the People’s Republic of China, and is authorized for sale and distribution in the
People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and Macau SAR).

AFRE BN Pearson Education, Inc 852 B4 15 1 k27 HRRCKE HY R AT o

Authorized for sale and distribution in the People’s Republic of China
exclusively (except Taiwan, Hong Kong SAR and Macao SAR).

NRTFHEANRKMEREARCE L EHES. W IR HITBX A E
EEHX)HE.

ARt RBUREERCE TR C S BlS: 01-2013-3028
AB MRS Pearson Education (4 B HARER) MARIFE, THRSERSHE.
KRR A, BRI R. RINEEREIE: 010-62782989 13701121933

E B R 4R B (CIP)&iiE

Bk wot S5 Hr Rl (38 3 Bk SEEIRR) = Introduction to the Design and Analysis of Algorithms, Third
Edition / (3&)3#4E T (Levitin, A.)#. — 3 HIAR. —dbnt: WAt 2013

ISBN 978-7-302-31185-0

[. @QF 1. @ UL OEFIREPHI—SERE— 95 @ RS0 —2aC IV, OTP301.6

I RRAS [15 CIP B 4% 7-(2013) 58 002529 5

RERE: UTHE HEH
HMEg: HE=
HERX: A8z
RAEED B X0 Je

HI R IT: R R
o fik . http://www. tup. com. cn, http://www. wgbook. com
i HE: dEEE AR REEPIRE A B Hi 4% : 100084
B Hl. 010-62770175 HB . 010-62786544
HRE5IEERS: 010-62776969, c-service@ tup. tsinghua. edu. cn
B B K& f%&: 010-62772015, zhiliang@ tup. tsinghua. edu. cn
s AR RFER
: =T R IT A PR A
: EEFE IS
: 185mm X 230mm El 3. 37.25 = #. 1047 T
: 2013 4F 5 HE 1 IR Ep W 2013 4F 5 H 551 YR ER
: 1~4000
: 79.00 JG

=

o=
S %N B I ook bk

¥ REEF CHW KD

En
£
do

7: 050764-01

—

B =

“AMABEZHEHE R RR GRS TR, RALRETALANEAERTAY.”

—George Forsythe, What to do till the computer scientist comes, 1968

TR HREAIL R I, SR R R A, B, XTEER BT
KENEM . NN BEERIR, FEA EAHGESE T LR PR S i — Rl SB—Ror sk
I) UK RN FE 0y Ko XM L T AR B HEHE . Ak, BSEEE. X
P2 O i s R T i R) —) B AN R S35, e e N7 B LU BOX SE BTV IR o Ll A
Ty TR TR R R AR, B TN AR RO IIE
SR R SE AR ROARCRA R, AR A R, BBk AT AN R B 5
AU, aRENTIRA TR B BOR, Bl g li—4. IS T7 (Bl W [BaY 95 3R i f Lol
T, XPE R TGS TR0 S SRR . SR SE VRO BORAT = R
S, FAEAEM P B, AT LS AR SRR B BT Sk . WS IMIES, XS
A FVESOHEARIBA M E. 3, NS B REA R N AR B 7 i SN AR 2 5TA
BEAT e WHEMNRFEBE A TEZE R, 0 Lk 27 AT R0 0 A4 AN [W F U8 5005
W ErE. Hese, TSRS bn THEE R S0 LA R 3=, K3k
AR, FPBVEARAE g il BUR A — PR SRS, AR S LU LA S R, th e A AT
HRHIEH .
BRI, TEiR MBS R NBCE I, SR A BT BOR > JIE AT A — L™
(IR . b i B2 BRI AR TR VF 2 R AT 70 2K . i T ISP R BR T, XT3 H
VEB ARIFIALESL IR BT BOARBEAT 3 KRS, 53 SR — S8 8RR IR 1) R A . (HIX
FhoCRR 3 BORRE R — B, 1 HAR AT R (7 A R Bk
BRI R 5 2
G HVERH AR S B 2 TR K, SR BTIT R — BRI Kik[Lev99], X
L IEFRAB IR BUT X E R IER LA T Z
o N KIEWALG S RKILE R T P . EUE R BT SRS, BINE A WEATA.
R N ERATFNEREEE, LT A G 1 R B a .

o HiIIAIR AARME G T VF 2 AR GIT R TOVE S R I RO LGSk HEHEY
BB, B0 WM ST AL EANEIAE, AN, BTLL, OBror ik
e LA —FE BT . — B 7 URIA I S 28 TR IR Bt A 2

o Wi IVER HARMA YN T AL R ORI E AR (A, B REMA ik RIATA N 3 ARl

O k1 George Forsythe I\ Ny, FEIXL6 T HYrh, S - HURIGE BRES . BUFFTHEPLERE .

ii FFiZit 5 54T e (F 3 B HEPIR)
FARFETE 3 AN,
o (EMTEIEBCERR, Bk S ot ka5 18 EiH (3 W% B).

T RCRAE Jo 18] 3K 8 B — R 1 SR B

FEAN T, FERRVHEOR N] T o EEAURE 7 A 28 i) O L ME— A BB 2SI T — 2%
BUHFRI AR, BATTEE R T8 A AR R IX LA) o (HATIX L BT BT 115 1)
KA S TR, AR N T AR T A e vk Sl A R il 1 AT TN R A I
RGN B, ORI M SO N T T e R S, JF HLAT AL RO B
ENAME, XREH s @ 8, AMTEETA RS, R AT R) UK 8 RE) A2 5%
HEB—ADLEAIR. TR AR, ATHEYRSARREEAR R b i TSR st Ao
R AR SIER), A& S VR At fa] B — S5 5 10 SRS R g A 1) 8

AR BIA LR BUH SR B TR A UR A AR B — 11 3R — ek 1) UK A 5 L iR AR, (HER
WA, FRATAN BT I A B A A IR SR LA IXFE — N — B —HIHL & . A TIXA H AR,
APBAE T — SR SR RN o BURFI] R RER R SRR AR T BB, (AT
SR 5 | 1 — 464 T) 1R 2R G 3 S B S B

AT fE R A H

R HRES —ABAZZ MR, Xl AT S #8673 X A i, A
P T W T% .

e R4 George Forsythe I Si(Z W515), FRiKEIA 5o P IR LE Ba Bl 7k 53 vk R4 iy
a2 TR PR B VORI X e SEAR I I e, FRIFAME) T80 SR &
5L, BB e n N AR B BRI Vi . isigE, K%
e WL T ISR,

o N 2 W RBIMITRIARIE, 1ZFHE S M AR IS A S 7 v AN 3 A s U SRR R S R Ty
EX R K. X —F L T — SRR AR i UL nT AL .

o 1irp R M HR A — LGy () U I ER) . Hrp L a) SR 2RO ek it i B S
SRS, RS DR B m g | A B n) o AR e R R B B s T Ak,
ANGEFE T B AT T N 2

o TF— i gl U Ao AT A B i B MRS R S el — A g .

o AP 600 Ll). HLBUEN THRKLG], RIS UEAN THRE B aE
SCHAY T RN B EEE X, 802N THH e h A L. 58
AT M ER B BAER I BEEAZ, BT R — R E S bR
T R (R A A7 o2y A T BE AT 58 MO e AR A MERE I) R, T AAS P A % 20 B bid:
MERE) e kS I 20 8 FH — P RE I 1) B AR RO

o APPSR BR T], BRIV LR RE RS A 20T HH 1 rh k2,
FFE AR AR B0 AT LU S 1 5 IR B0M R B, R A% B3] 010-62791865, LUISKA#U A (b
ATERRRTEA A B A, s Uil www. pearsonhighered.com/irc). A5 IATfu]
B BT LAAE CS SCREMG hetp://cssupport.pearsoncmg.com 4% PowerPoint #% [

uu\,

pl

2\

il

ZIHT F 3AF

% 3 hRAYEIL

B3 R TR . S B T R AR A IR IR VAR R IO SR Y . 35 3 RS SEAY
WGk, Jaramiaik, XEHEA LT LA
Iy iGik, WG ER .

LKA 1) 7 1, IR SE T
IXFER R HEMUY- (T e AR AT, TG A5 I AR e
HALR I3 OB &l S A REPE B S TN, IX R H] Lomuto S99 5L) R S B, ifiKe
Hoare X1l 73 7592 (8) 43486 B 42 0 SC 5 PRsHEF— IR 2
P AR G B A R
7 R ER AR 8 FOC TS MBI N E, RAAW R PTA.
o FIREIMINARLEHM . (LRI T I R BRI B RIS RRIX—
FERAR, AHLEE 3 P4 3 DNIERIE R, IXFE A RRCR A

o 8.1 MBI AR, G LELERT PR BATE K RAT N H o

o 8 FEHLA/INTT AN A R, DA R iR AR PR E R BOR .

BEAh, JEAT HAl — 282 . BN 1A A BTk A DR N R o 3k 7 P S AN 1 B
BENE, RN RDSEM I AR, BRI GH. fEN A E AL X R
RS, SORrRs AL 0 SRR Il) U 2GR A BRI . SR A AL
SLE AT RSR A RA T B () RS IR, 9K 2% SCRR th AR 1. 58T -

553 WUBTIZY 70 TE L, L R SR A) L

IEEFFFIRE =

AP E B B4 2] T B A AR ER R R — [I ERRME g B R R . A T IXFERI 40N
5, AN IZAEWEREA DR A EMA BRI M. R, 1.4 95, 3 A R
B 3SR X IEA (K B 2k 4, 25 B SR A SR HEC R 4wl b4 T TR IR, A 3 4
ANTT(2.2 55 114 Y5 F 12.4 777) 2 F 31— Sofa] g SR 23 iy, dn SRS /D 0 R PR 2
SEA] LABKILIX 3 N BB BN, IR AN S A AP LA 4 I R A

e R g cl:

W SRAT ST B 1 VS A B BOARK UFg SR B TR A B IR UR R, T LURHI A
T Eh . B FHA SO IREE, AN AE T RES T Fs 1. RIE ok,
BRL S 3~12 FEHERIr W AN R M G AR > PR . AT AR fl— AN FE oM AT L4
A A JUIRE 2.6 TR 2.7 5, eI RIA R T AR T REE TR, XN) BT
i (TN C e o

© PRE: “HR2)” RSO “project”, —RRMNVAZEIERL “IUH 7, {HE AN R A E TG SR . B
BUME) . SR SEBREHER M S PN project, Bl ACAH N IFRIE, FrLAdh High “452)7.

Fikikit 5ot (% 3 FEPR)

v
FngE TR AN SRR TR, X F I 40 TR A b R U
LN £ 0 N o]
1 WREEfRI A 1.1~1.3
% 3 SHTHESE, O, O QY 2.1y 22
4 s RSV (K 0 5 B 2.3
5, 6 VAR S 2.4, 2.5(+ff3% B)
7 W5k 3.1, 3.2(+3.3)
8 FIA K 3.4
9 IREEARSE X IR A B S A 4k 3.5
10~11 | 50k EmAHDY. by 4.1, 4.2
12 P21 1 HOR A Sk 4.4
13 A Bk 4.5
14~15 | srifdd: GJF e, Pudidey 5.1~5.2
16 HAth o3 16 1R) 53. 548055
16 oS S RPN 5.6
17~19 | Sk FHy . sl 2k, Pk 6.1~6.3
" BRI HEREHE T 6.4 o§,
T AN) 6.5
21 i) LA, T 6.6
22~24 | RSB SBIUAC. /L. B R 7.2~7.4
25~27 | ZhAMRISE 8.1~8.4(% 3 1)
28~30 | oxAESLL: Prim 5%, Kruskal §79%. Dijkstra 535, WREHIEL | 9.1~94
31~33 | EARSuk 10.1~10.4(3% 3)
34 TS 11.1
35 TR 11.2
36 P. NP Fll NP 54] i 11.3
37 YR APS 11.4(+12.4)
38 [EIRIRPS 12.1
39 o3 SC IRV 12.2
40 NP VR AE) 381 a0 AL B2 12.3

Anany Levitin

anany.levitin@yvillanova.edu

New to the Third Edition

® Reordering of chapters to introduce decrease-and-conquer before divide-
and-conquer

B Restructuring of chapter 8 on dynamic programming, including all new intro-
ductory material and new exercises focusing on well-known applications
® More coverage of the applications of the algorithms discussed

® Reordering of select sections throughout the book to achieve a better align-
ment of specific algorithms and general algorithm design techniques

® Addition of the Lomuto partition and Gray code algorithms

® Seventy new problems added to the end-of-chapter exercises, including algo-
rithmic puzzles and questions asked during job interviews

xvii

Preface

The most valuable acquisitions in a scientific or technical education are the
general-purpose mental tools which remain serviceable for a life-time.

—George Forsythe, “What to do till the computer scientist comes.” (1968)

lgorithms play the central role both in the science and practice of computing.

Recognition of this fact has led to the appearance of a considerable number
of textbooks on the subject. By and large, they follow one of two alternatives
in presenting algorithms. One classifies algorithms according to a problem type.
Such a book would have separate chapters on algorithms for sorting, searching,
graphs, and so on. The advantage of this approach is that it allows an immediate
comparison of, say, the efficiency of different algorithms for the same problem.
The drawback of this approach is that it emphasizes problem types at the expense
of algorithm design techniques.

The second alternative organizes the presentation around algorithm design
techniques. In this organization, algorithms from different areas of computing are
grouped together if they have the same design approach. I share the belief of many
(e.g., [BaY95]) that this organization is more appropriate for a basic course on the
design and analysis of algorithms. There are three principal reasons for emphasis
on algorithm design techniques. First, these techniques provide a student with
tools for designing algorithms for new problems. This makes learning algorithm
design techniques a very valuable endeavor from a practical standpoint. Second,
they seek to classify multitudes of known algorithms according to an underlying
design idea. Learning to see such commonality among algorithms from different
application areas should be a major goal of computer science education. After all,
every science considers classification of its principal subject as a major if not the
central point of its discipline. Third, in my opinion, algorithm design techniques
have utility as general problem solving strategies, applicable to problems beyond
computing.

Xix

XX

Preface

Unfortunately, the traditional classification of algorithm design techniques
has several serious shortcomings, from both theoretical and educational points
of view. The most significant of these shortcomings is the failure to classify many
important algorithms. This limitation has forced the authors of other textbooks
to depart from the design technique organization and to include chapters dealing
with specific problem types. Such a switch leads to a loss of course coherence and
almost unavoidably creates a confusion in students’ minds.

New taxonomy of algorithm design techniques

My frustration with the shortcomings of the traditional classification of algorithm
design techniques has motivated me to develop a new taxonomy of them [Lev99],
which is the basis of this book. Here are the principal advantages of the new
taxonomy:

B The new taxonomy is more comprehensive than the traditional one. It includes
several strategies—brute-force, decrease-and-conquer, transform-and-con-
quer, space and time trade-offs, and iterative improvement—that are rarely
if ever recognized as important design paradigms.

® The new taxonomy covers naturally many classic algorithms (Euclid’s algo-
rithm, heapsort, search trees, hashing, topological sorting, Gaussian elimi-
nation, Horner’s rule—to name a few) that the traditional taxonomy cannot
classify. As a result, the new taxonomy makes it possible to present the stan-
dard body of classic algorithms in a unified and coherent fashion.

®]t naturally accommodates the existence of important varieties of several
design techniques. For example, it recognizes three variations of decrease-
and-conquer and three variations of transform-and-conquer.

® [t is better aligned with analytical methods for the efficiency analysis (see
Appendix B).

Design techniques as general problem solving strategies

Most applications of the design techniques in the book are to classic problems of
computer science. (The only innovation here is an inclusion of some material on
numerical algorithms, which are covered within the same general framework.)
But these design techniques can be considered general problem solving tools,
whose applications are not limited to traditional computing and mathematical
problems. Two factors make this point particularly important. First, more and
more computing applications go beyond the traditional domain, and there are
reasons to believe that this trend will strengthen in the future. Second, developing
students’ problem solving skills has come to be recognized as a major goal of
college education. Among all the courses in a computer science curriculum, a
course on the design and analysis of algorithms is uniquely suitable for this task
because it can offer a student specific strategies for solving problems.

I am not proposing that a course on the design and analysis of algorithms
should become a course on general problem solving. But I do believe that the

Preface xxXi

unique opportunity provided by studying the design and analysis of algorithms
should not be missed. Toward this goal, the book includes applications to puzzles
and puzzle-like games. Although using puzzles in teaching algorithms is certainly
not a new idea, the book tries to do this systematically by going well beyond a few
standard examples.

Textbook pedagogy

My goal was to write a text that would not trivialize the subject but would still be
readable by most students on their own. Here are some of the things done toward
this objective.

® Sharing the opinion of George Forsythe expressed in the epigraph, I have
sought to stress major ideas underlying the design and analysis of algorithms.
In choosing specific algorithms to illustrate these ideas, I limited the number of
covered algorithms to those that demonstrate an underlying design technique
or an analysis method most clearly. Fortunately, most classic algorithms satisfy
this criterion.

® In Chapter 2, which is devoted to efficiency analysis, the methods used for
analyzing nonrecursive algorithms are separated from those typically used for
analyzing recursive algorithms. The chapter also includes sections devoted to
empirical analysis and algorithm visualization.

® The narrative is systematically interrupted by questions to the reader. Some
of them are asked rhetorically, in anticipation of a concern or doubt, and are
answered immediately. The goal of the others is to prevent the reader from
drifting through the text without a satisfactory level of comprehension.

® Each chapter ends with a summary recapping the most important concepts
and results discussed in the chapter.

® The book contains over 600 exercises. Some of them are drills; others make
important points about the material covered in the body of the text or intro-
duce algorithms not covered there at all. A few exercises take advantage of
Internet resources. More difficult problems—there are not many of them—
are marked by special symbols in the Instructor’s Manual. (Because marking
problems as difficult may discourage some students from trying to tackle them,
problems are not marked in the book itself.) Puzzles, games, and puzzle-like
questions are marked in the exercises with a special icon.

® The book provides hints to all the exercises. Detailed solutions, except for
programming projects, are provided in the Instructor’s Manual, available
to qualified adopters through Pearson’s Instructor Resource Center. (Please
contact your local Pearson sales representative or go to www.pearsonhighered
.com/irc to access this material.) Slides in PowerPoint are available to all
readers of this book via anonymous ftp at the CS Support site: http://cssupport
.pearsoncmg.com/.

Preface

Changes for the third edition

There are a few changesin the third edition. The most important is the new order of
the chapters on decrease-and-conquer and divide-and-conquer. There are several
advantages in introducing decrease-and-conquer before divide-and-conquer:

® Decrease-and-conquer is a simpler strategy than divide-and-conquer.

B Decrease-and-conquer is applicable to more problems than divide-and-con-
quer.

B The new order makes it possible to discuss insertion sort before mergesort
and quicksort.

® The idea of array partitioning is now introduced in conjunction with the
selection problem. I took advantage of an opportunity to do this via the one-
directional scan employed by Lomuto’s algorithm, leaving the two-directional

scan used by Hoare’s partitioning to a later discussion in conjunction with
quicksort.

B Binary search is now considered in the section devoted to decrease-by-a-
constant-factor algorithms, where it belongs.

The second important change is restructuring of Chapter 8 on dynamic pro-
gramming. Specifically:

® The introductory section is completely new. It contains three basic examples
that provide a much better introduction to this important technique than
computing a binomial coefficient, the example used in the first two editions.

® All the exercises for Section 8.1 are new as well; they include well-known
applications not available in the previous editions.

® T alsochanged the order of the other sections in this chapter to get a smoother
progression from the simpler applications to the more advanced ones.

The other changes include the following. More applications of the algorithms
discussed are included. The section on the graph-traversal algorithms is moved
from the decrease-and-conquer chapter to the brute-force and exhaustive-search
chapter, where it fits better, in my opinion. The Gray code algorithm is added to the
section dealing with algorithms for generating combinatorial objects. The divide-
and-conquer algorithm for the closest-pair problem is discussed in more detail.
Updates include the section on algorithm visualization, approximation algorithms
for the traveling salesman problem, and, of course, the bibliography.

I also added about 70 new problems to the exercises. Some of them are algo-
rithmic puzzles and questions asked during job interviews.

Prerequisites

The book assumes that a reader has gone through an introductory programming
course and a standard course on discrete structures. With such a background,
he or she should be able to handle the book’s material without undue difficulty.

Preface xXiii

Still, fundamental data structures, necessary summation formulas, and recurrence
relations are reviewed in Section 1.4, Appendix A, and Appendix B, respectively.
Calculus is used in only three sections (Section 2.2, 11.4, and 12.4), and to a very
limited degree; if students lack calculus as an assured part of their background, the
relevant portions of these three sections can be omitted without hindering their
understanding of the rest of the material.

Use in the curriculum

The book can serve as a textbook for a basic course on design and analysis of
algorithms organized around algorithm design techniques. It might contain slightly
more material than can be covered in a typical one-semester course. By and large,
portions of Chapters 3 through 12 can be skipped without the danger of making
later parts of the book incomprehensible to the reader. Any portion of the book
can be assigned for self-study. In particular, Sections 2.6 and 2.7 on empirical
analysis and algorithm visualization, respectively, can be assigned in conjunction
with projects.

Here is a possible plan for a one-semester course; it assumes a 40-class meeting
format.

Lecture Topic Sections
1 Introduction 1.1-13
2,3 Analysis framework; O, Q, © notations 21,22
4 Mathematical analysis of nonrecursive algorithms 23
5,6 Mathematical analysis of recursive algorithms 24,25 (+ App. B)
7 Brute-force algorithms 3.1,32(+3.3)
8 Exhaustive search 34
9 Depth-first search and breadth-first search 35
10, 11 Decrease-by-one: insertion sort, topological sorting 41,42
12 Binary search and other decrease-by-a-constant- 44
factor algorithms
13 Variable-size-decrease algorithms 45
14,15 Divide-and-conquer: mergesort, quicksort 5.1-5.2
16 Other divide-and-conquer examples 53or54o0r55
17-19 Instance simplification: presorting, Gaussian elimi- 6.1-6.3
nation, balanced search trees
20 Representation change: heaps and heapsort or 6.4 or 6.5
Horner’s rule and binary exponentiation
21 Problem reduction 6.6
22-24 Space-time trade-offs: string matching, hashing, B- 7.2-7.4
trees
25-27 Dynamic programming algorithms 3 from 8.1-8.4

xxiv

Preface

28-30 Greedy algorithms: Prim’s, Kruskal’s, Dijkstra’s, 9.1-94
Huffman’s

31-33 Iterative improvement algorithms 3 from 10.1-10.4

34 Lower-bound arguments 11.1

35 Decision trees 11.2

36 P, NP, and NP-complete problems 11.3

37 Numerical algorithms 11.4 (+ 12.4)

38 Backtracking 121

39 Branch-and-bound 12.2

40 Approximation algorithms for NP-hard problems 123

Acknowledgments

I would like to express my gratitude to the reviewers and many readers who
have shared with me their opinions about the first two editions of the book and
suggested improvements and corrections. The third edition has certainly ben-
efited from the reviews by Andrew Harrington (Loyola University Chicago),
David Levine (Saint Bonaventure University), Stefano Lombardi (UC Riverside),
Daniel McKee (Mansfield University), Susan Brilliant (Virginia Commonwealth
University), David Akers (University of Puget Sound), and two anonymous re-
viewers.

My thanks go to all the people at Pearson and their associates who worked
on my book. I am especially grateful to my editor, Matt Goldstein; the editorial
assistant, Chelsea Bell; the marketing manager, Yez Alayan; and the production
supervisor, Kayla Smith-Tarbox. I am also grateful to Richard Camp for copyedit-
ing the book, Paul Anagnostopoulos of Windfall Software and Jacqui Scarlott for
its project management and typesetting, and MaryEllen Oliver for proofreading
the book.

Finally, I am indebted to two members of my family. Living with a spouse
writing a book is probably more trying than doing the actual writing. My wife,
Maria, lived through several years of this, helping me any way she could. And help
she did: over 400 figures in the book and the Instructor’s Manual were created
by her. My daughter Miriam has been my English prose guru over many years.
She read large portions of the book and was instrumental in finding the chapter
epigraphs.

Anany Levitin
anany.levitin@villanova.edu
June 2011

O 0O NO G A~ WN=

- =k -
N = O

Brief Contents

New to the Third Edition
Preface

Introduction

Fundamentals of the Analysis of Algorithm Efficiency
Brute Force and Exhaustive Search
Decrease-and-Conquer

Divide-and-Conquer

Transform-and-Conquer

Space and Time Trade-Offs

Dynamic Programming

Greedy Technique

Iterative Improvement

Limitations of Algorithm Power

Coping with the Limitations of Algorithm Power

Epilogue

APPENDIX A

Useful Formulas for the Analysis of Algorithms

APPENDIX B

Short Tutorial on Recurrence Relations

References
Hints to Exercises
Index

Xvii

Xix

41

97
131
169
201
253
283
315
345
387
423

471

475

479

493
503
547

1.2

1.3

Contents

New to the Third Edition

Preface

Introduction

What Is an Algorithm?
Exercises 1.1

Fundamentals of Algorithmic Problem Solving
Understanding the Problem

Ascertaining the Capabilities of the Computational Device
Choosing between Exact and Approximate Problem Solving
Algorithm Design Techniques

Designing an Algorithm and Data Structures

Methods of Specifying an Algorithm

Proving an Algorithm’s Correctness

Analyzing an Algorithm

Coding an Algorithm

Exercises 1.2

Important Problem Types
Sorting

Searching

String Processing

Graph Problems

Combinatorial Problems
Geometric Problems
Numerical Problems

Exercises 1.3

© O W N W =

1
12
12
13
14
15

17

18
19
20
20
21
21
22
22

23

vii

viii

Contents

1.4

2.1

2.2

2.3

24

2.5

2.6

2.7

Fundamental Data Structures
Linear Data Structures

Graphs

Trees

Sets and Dictionaries

Exercises 1.4

Summary

Fundamentals of the Analysis of Algorithm
Efficiency

The Analysis Framework

Measuring an Input’s Size

Units for Measuring Running Time

Orders of Growth

Worst-Case, Best-Case, and Average-Case Efficiencies
Recapitulation of the Analysis Framework

Exercises 2.1

Asymptotic Notations and Basic Efficiency Classes
Informal Introduction

O-notation

Q-notation

®-notation

Useful Property Involving the Asymptotic Notations

Using Limits for Comparing Orders of Growth

Basic Efficiency Classes

Exercises 2.2

Mathematical Analysis of Nonrecursive Algorithms
Exercises 2.3

Mathematical Analysis of Recursive Algorithms
Exercises 2.4

Example: Computing the nth Fibonacci Number
Exercises 2.5

Empirical Analysis of Algorithms
Exercises 2.6

Algorithm Visualization
Summary

25
25
28
31
35

37
38

41

42
43
44
45
47
50

50

52
52
53
54
55
55
56
58

58

61
67

70
76

80
83

84
89

91
94

