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Preface to the Series
in Information and Computational Science

Since the 1970s. Science Press has published more than thirty volumes in its series
Monographs in Computational Methods. This serics was cstablished and led by the late
academician, Feng Kang, the founding director of the Computing Center of the Chi-
nese Academy of Sciences. The monograph series has provided timely information of
the frontier directions and latest research results in computational mathematics. It has
had great impact on young scientists and the entire research community, and has played
a very important role in the development of computational mathematics in China.

To cope with these new scientific developments, the Ministry of Education of the
People’s Republic of China in 1998 combined several subjects. such as computational
mathematics, numerical algorithms, information science, and operations research and
optimal control, into a new discipline called Information and Computational Science.
As a result, Science Press also reorganized the editorial board of the monograph series
and changed its name to Series in Information and Computational Science. The first
editorial board meeting was held in Beijing in September 2004, and it discussed the
new objectives, and the directions and contents of the new monograph series.

The aim of the new series is to present the state of the art in Information and
Computational Science to senior undergraduate and graduate students, as well as to
scientists working in these fields. Hence, the series will provide concrete and system-
atic expositions of the advances in information and computational science, encom-
passing also related interdisciplinary developments.

I would like to thank the previous editorial board members and assistants, and all
the mathematicians who have contributed significantly to the monograph series on
Computational Methods. As a result of their contributions the monograph series
achieved an outstanding reputation in the community. | sincerely wish that we will ex-
tend this support to the new Series in Information and Computational Science, so that
the new series can equally enhance the scientific development in information and

computational science in this century.

Shi Zhoneci

2005.7



Preface

Computational geometry is an interdisciplinary subject composed of approximation theory,
differential geometry, computational mathematics. and computer graphics. ete. This sub-
ject studies the structure, representation. analysis and synthesis ol geometric shapes using
computers. It is the mathematical foundation of computer aided geometric design (CAGD).

In the 1960s, computer aided design (CAD) and computer aided manufacturing (CAM)
entered the shipbuilding. aviation and the automobile industries helping to shape. design
and manufacture. Stumulated by the development of computer technology and wide appli-
cations of industrial design. the subject of computational geometry has been developing
rapidly. Heretofore. many effective methods. such as Bézier. B-spline. non-uniform rational
B-spline (NURBS). subdivision. and partial differential equations have been established.
based on the parametric, implicit and discrete presentations ot surfaces and the theory of
interpolation and approximation. At present. CAGD is still an attractive field with large
number of the researchers engaged with classical approximation theory. differential geo-
metry. computational mathematics and computer graphies. devoting themselves to this area.
helping to promote its comprehensive development. Under such a background. an emerging
ficld of rescarch. geometric partial differential equation methods in computational geometry,
is generated.

Itis generally known that partial differential equations (PDEs) are equations describing
the relationship among independent variables, unknown functions, and their partial deriva-
tives. However, geometric partial differential equations. which are used to control the motion
of surfaces and manifolds, are partial differential equations which include only geometric
quantities. except the time variable. Geometric partial differential equations are geomet-
ric. which means that they do not depend on specific parametrization. More importantly.
surfaces satisfving the geometric partial differential equations usually have some global op-
timal properties. For instance. the mean curvature flow. the Willmore flow. and the minimal
mean curvature variation flow minimize the area. the total squared mean curvature and the
total squared variation of the mean curvature of the surfaces. respectively. These optimal
properties make the generated surfaces possess a perfect fairing effect and even an aesthetic
feeling of art.

The method of solving various geometric design problems using geometric partial di-
geometric partial differential equation method. In recent

fferential equations is named as the
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years, with the developmentof computer technology. the geometric partial differential equa-
tion method has exhibited obvious superiority in many ficlds. such as CAD, CAGD. surface
processing and image processing. The method has many advantages, such as solid theoreti-
cal basis, high etficiency, ease of programming, possessing a generic and wide applicability.
and so forth. It can be used in the domains of image processing. surface processing. quality
meshing. free-form surface design. surface blending. surface reconstruction. surface reco-
very, shape deformation. and so on.

Geometric partial differential equations also involve many other theoretical and appli-
cation areas. In the areas of physics. chemistry. biology. fluid mechanics. material science.
combustion theory. seismology and computer vision, there exists many interface motion
problems. Many of these problems can be abstracted as geometric problems and described
by geometric partial differential equations. In theory, geometric partial differential equa-
tions are closely related to geometrical analysis. manifold theory. topology. complex analy-
sis, variational method. geometric measurement theory. and critical point theory. For exam-
ple. the mean curvature flow and the Ricei flow relate to the positive mass conjecture and
Poincaré conjecture. respectively.

Earlier research on using PDEs to handle surface modeling problems can be traced back
to the work of Bloor et al. at the end of the 1980s. The basic idea in their work is to use bi-
harmonic equation on a rectangular domain to solve the blending and hole filling problems.
However. the biharmonic equation is not intrinsic. The solution of the equation depends
on specific parametrization. Therefore, the bitharmonic equation is not a geometric partial
differential equation we considered in this book. There are many successful examples of
solving geometry design problems by geometric partial differential equations. In the carly
days. the mean curvature flow was used to smooth noise surfaces and very desirable results
are obtained. However. since the second-order flow, such as the mean curvature flow, cannot
achieve a smooth blending of different surface patches. the fourth- and sixth-order geometric
flows are used afterward in the surface blending. free-form surface design. surface recovery.
and so on. yielding perfect results.

In conclusion. the geometric partial differential equation method used in computational
geometry is still a fresh field with wide development potential and is currently at its new-
born stage. The content of this book is mainly about the authors™ research results and work
experience in this field. Our wish is to promote the development of the geometric partial
differential equation method so as to make it a systemic. integrated and effective method in
the area of computational geometry. In Chapter 1. elementary differential geometry is re-
viewed, including surface representations, curvatures and differential gecometric operators,
and Green's formulas for differential operators. In Chapter 2. geometric partial differen-
tial equations for parametric surfaces are constructed for several general energy function-
als by complete variational calculus and normal variational calculus. Parallel to Chapter 2.
in Chapter 3. geometric partial differential equations are constructed for implicit surfaces
by several approaches and their relationship is discussed. Chapter 4 is devoted to the dis-
cretization of differential operators and curvatures and their convergence analysis. In Chap-
ter 5. discrete surface design by quasi finite difference method is discussed. Chapter 6 deals
with the spline surface design problem by quasi finite difference method and finite element
method. Subdivision surface design by finite element methods is presented in Chapter 7.
In Chapter 8. we discuss the level-set method for surface designs and its applications. such
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as surface reconstruction from scattered data set. and surface metamorphosis. In Chapter 9,
we discuss quality meshing by geometric flows, such as triangular, quadrilateral. tetrahedral
and hexahedral meshing with single domain or multiple domains.

The content of the book covers the main research work of the computational geome-
try rescarch group in the Institute of Computational Mathematics and Scientific Engineer-
ing Computing in Chinese Academy of Sciences in the past decade. Postdoctoral fellows
Huanxi Zhao and Hongqing Zhao. PhD students Qing Pan. Qin Zhang. Dan Liu, Ming Li.
Yanmei Zheng. Zhucui Jing. Chong Chen. Xia Wang and Juelin Leng, successively. partici-
pated in this research work. and for their contributions to this book the authors are sincerely
grateful. My graduate students. Ming Li and Yanmei Zheng. carefully read the first draft
of the book. and made a comprehensive discussion in our seminar and put forward many
suggestions for revision. Professor Chadrajit Bajaj of the University of Texas at Austin. Dr.
Zhigiang Xu in the Institute of Computing Mathematics and Scientific Engineering Com-
puting. Professor Yongjie Zhang of Carnegie Mellon University and Dr. Wenqi Zhao of the
University of Texas at Austin cooperated with me and also contributed to the content of the
book. The authors give their earnest thanks to them.

The project was successively supported by Chinese Academy of Sciences Innovation
Fund (1770900), National Natural Science Foundation of China (10241004, 10371130,
60773165), National Key Basic Research Program (2004CB318000). NSEC key project
under grant (10990013) and NSFC Funds for Creative Research Groups of China (grant
No. 11021101). The State Key Laboratory of Scientific and Engineering Computing also
constantly supports the project with its various software tools. hardware facilities. as well
as research fund. Obviously. without these funds and supports. the project would not have
been completed smoothly. On the occasion of the forthcoming book. the authors give their
hearttelt thanks to these supports.

Lastly. the authors would like to thank their families for their continuous support.

Guoliang Xu

State Key Laboratory of Scientific and Engineering Computing
The Institute of Computational Mathematics and
Scientific/Engineering Computing

Chinese Academy of Sciences

Beijing. July. 2012
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1D One-Dimensional
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AMCE  Averaged Mean Curvature Flow

CAD Computer Aided Design
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Chapter 1
Elementary Differential Geometry

In this chapter, we review the basic results of elementary differential geometry for sur-
faces in Euclidean space and collect some useful materials for the reference of subsequent
chapters. Starting from the parametric representation of surfaces, we introduce the curva-
tures, differential operators, Green’s formulas and some global properties of surfaces. Basic
knowledge of implicit surfaces (level-set surfaces) is also provided. For a thorough expedi-
tion of elementary differential geometry, one is referred to, such as [111,216,344]. Some
material in this chapter is extracted from [73,427].

1.1 Parametric Representation of Surfaces

In this book, we denote by R the one-dimensional real field, R” the n-dimensional real
Euclidean space, where element x = [x},- - .Xn]T is expressed by a column vector. The set
of m x n real matrices is denoted by R”*". We use square brackets [- - - | to represent a matrix
or a vector, parenthesis (---) an ordered array, braces {--- } a set. An m-dimensional vector
is treated as a matrix in R”*!. The transpose of matrix A is expressed as Al

Our starting point is a two-dimensional surface embedded in R?. Suppose a right-handed
Cartesian coordinate system {O;x,y,z} has been introduced in R?.

Definition 1.1  If a one-to-one mapping from a domain Q = {[u.v]"} € R? to R?

x(u,v) = [x(u,v), y(1,v), 2(ue,v)]" (1.1)
satisfies
(1) the function x(u,v) is sufficiently smooth in €2,

Jx ox . .
(2) the vectors x, = — and x,, = — are linearly independent,
\

du dv

then we say that the set S = {x(u,v) : [u.v]" € Q} is a surface in R?, and x(u,v) is the
parametric representation of S. The variables « and v are called the parameters of this
representation.
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In Definition 1.1, “sufficiently smooth™ means that the function considered has the continu-
ous derivatives of the required order. In this book, saying a function is “sufficiently smooth™
or “properly smooth”™ means that it has the required smoothness. For simplifying the no-
tations. we sometimes denote parameter («.v) by w = (u'.u?). Unless otherwise stated.
we always assume that € is a closed region homeomorphism to a disc in &°. The second
condition can also be expressed as the Jacobian matrix

dx dx
du' o>
J=| 9 9
du' Ju?
dz dz

du' du?

is of rank 2 in .

The second condition in Definition 1.1 enables us to solve locally for u,v from a suit-
able pair of the three functions x(u,v),v(u,v) and z(u,v). Then we can represent one of the
quantities x.y.z as a function of the other two. For instance, if the determinant of the first
two rows of J is different from zero in a certain subdomain Q' of Q. then « and v can be
represented as functions of x and y. By plugging « and v into the parametric representation
(1.1), we obtain a graph representation z = F(x,y) of the surface S.

Assume that a surface S has a parametric representation (1.1) and x is a point on S. The
tangent plane 758§ to the surface S at the point x is defined by

7S = span{x,.x, }.

where span{x,. X, } is a space spanned by x,, and x,. Vectors x,, and x,. are called coordinate
tangent vectors.

The parametric representation (1.1) is not unique. If x(#.7) is another parametric repre-
sentation of the surface S in domain Q = {[#.7]"}, then the transformation

ua:ua(ﬁlqﬁ:). a=1.2, (1.2)

is said to be an allowable coordinate transformation if the following two conditions hold.

(1) The functions in (1.2) are sufficiently smooth in © and the transformation is one-to-one.
(2) The Jacobian matrix

du' Ju'

diit di?

J ¥ 5.3

du= du-

da' dir’

of the transformation is nonsingular everywhere in Q.

The determinant of the Jacobian matrix of the transformation (1.2) is always abbreviated
as the Jacobian of the transformation.
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Definition 1.2 If a quantity of a surface is independent of the specific parametric repre-
sentation of the surface, then this quantity is called geometric.

For a surface, we are sometimes interested in the invariant properties when we im-
pose a congruent transformation on it. A congruent transformation T in R? keeps the sur-
face invariant except for its position and can be expressed by a linear transformation, i.e..
Tx = Tx +y. where T is an orthogonal matrix and y is a vector. If det(T) = 1, the con-
gruent transformation is called direct congruent transformation, which is composed of the
rotation and translation. The direct congruent transformation is also called rigid motion.
Correspondingly, if det(T) = —1, the congruent transformation is called opposite congru-
ent transformation, which is composed of the rotation, translation and an odd number of
reflections.

The first fundamental form. The differential 2-form
[ = (dx.dx) = ¢ ;dudu + 2g2dudv + grodvdy = .Qa/jdlladll/j

is the first fundamental form of a surface, where dx = x,,adu® and 8ap = (X X p) are the
coefficients of the first fundamental form. The symbol (-,-) stands for the Euclidean inner
product of two vectors in R*. We have used the Einstein summation convention in the last
equality of the first fundamental form. According to this convention, when an index appears
twice in a single term, once in an upper (superscript) position and once in a lower (subscript)
position, it implies that we take the summation over all its possible values. This can greatly
simplify the usage of notations.

Property 1.1  The first fundamental form of a surface is geometric.

The first fundamental form enables us to measure the length of a curve on a surface and
the area of a surface. Let C : x(r) = x(u' (1). 1,13(1)) be a curve on a surface S : x(u! .ul). Then
the length of an arc of C bounded by the points corresponding to the values 7 =7y and r =1,
is given by the integral

1

5 S— o i I S—
§= / V(X' .x')ydr = / \/(x,,uu“'.x“ﬁuﬁ/)dr = / \/‘qu/jlla/llﬁ,dl.
Jy i

o 1y
where primes denote derivatives with respect to ¢.
The area of the surface S is defined by A(S) = / dA with dA the area element of the
Js

surface S. If the surface S has a parametric representaiion (1.1). then A(S) can be expressed
by

A(S) = /.dA: // X, * X, |dudv = // gdudy,
Js ..Q‘ | ..Q\'f

where g = det[gqp] = 11822 — gf: and we have used Lagrange’s identity

5
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‘xu X Xy|” = 1-\'14‘ ]X\-‘ - \lxu-x\-\)



