

Decision Table
Software

A Handbook

by Herman McDaniel

U.S. Civil Service Commission

o

Brandon/Systems Press, Inc.

Princeton New York London

Copyright © 1970 by Brandon/Systems Press, Inc.,
a subsidiary of Brandon Applied Systems, Inc.

All rights reserved. No part of this work covered by
the copyrights hereon may be reproduced or used in
any form or by any means—graphic, electronic, or
mechanical, including photocopying, recording,

taping, or information storage and retrieval systems—
without written permission of the publisher.

Library of Congress Catalog Card Number 78-101001
Standard Book Number: 87769-024-3

First Printing

Printed in the United States of America

DECISION TABLE SOFTWARE —
A HANDBOOK

PREFACE

This book is intended us a guide for the data processing manager or
systems analyst who has decided to “look into” decision table processors.
Here. in concise, easy to rcad form, is basic information regarding more
than thirty processors. Language, hardware, availability, and cost
information are provided. along with a list of major features attributed
to each processor. Special reference manuals are indicated for some
of the processors. Segments of computer programs that have been
generated by some of the processors are shown.

It should be a relatively simple task to select those processors that
are acceptable at first glance on the basis of hardware, language, avail-
ability, and cost. The fcatures should be checked thoroughly to see
what benefits might be realized within an organization. More detailed
information is required to make a final selection, and sources for such
information are suggested.

No attempt has been made to evaluate and rank the available decision
table software. To avoid giving any impression of ranking, the software
is arranged in alphabeticil sequence by name. The amount written about
a particular processor hus no relationship to its value or effectiveness.
The longer write-ups are directly attributable to the fact that more infor-
mation is available regarding some processors.

In view of the rapid changes and continuous updating of the features
by some vendors, neither the author nor the publisher should be held
responsible for inaccuracies in this area. Every effort has been made
to be accurate and fair in describing the various processors, but errors
undoubtedly have crept in. If the reader detects errors or omissions, he
is urged to notify the author (through the publisher) so that future
editions of this book will be more accurate.

The information contained in Decision Table Software should
prove valuable to anyonc attempting to select a decision table processor.

Herman McDaniel
Washington, D.C.

vii

ACKNOWLEDGMENTS

A project such as this book is never the result of the efforts of a singlc
individual. The author must obtain information from others who are
knowledgable in the field.

In gathering information for this book, I sought out all of the
American computer manufacturers, the major European and Asian
manufacturers, and the primary American softwire vendors. The fol-
lowing people deserve recognition for contributing useful information
toward this endeavor; in view of the rapid changes of affiliation in the
EDP field, only the names of the individuals are listed: James M. Adams,
Jr., Park F. Anderson, Jr., Paul Anson, Jill Arbudde, G. W. Armerding,
Charles W. Bash, Ronald L. Basler, Florence Bernhardt, Harry Bjork,
C. W. Blaxter, R. Boot, Richard T. Bueschel, Tom Caldwell, A. Chiap-
pinelli, Jr., H. G. Conrad, Wesley H. Cowley. Judith Curric. Joseph
D’Aulerio, Jr., Carol Davidson, Henri Denoff, Donald J. Devine, Carl
Diesen, P. J. Dixon, Bert Engelhardt, Howard Fletcher, James F. Foley,
Barry Forester, L. H. Foxx, Jerome W. Geckle, Frank X. Goelz, George
G. Hancock, Jr., Fred G. Harold, John S. Hermistone, T. F. Kavanagh,
W. P. Keating, Henry Kee, Kamil Khan, B. H. King, Jr.. Thomas A.
Kraska, David Lawrence, John K. Lenher, H. I. Meyer, James I.
Morgan, Svein Nordbotten, James L. O’Brien. George Oerter, A.
Michael O’Reilly, Carl Payden, Larry M. Pigg. Sol Pollock, Joseph V.
Popolo, Lewis T. Reinwald, Perros Roebas, C. B. Rogers, Jr.. H. L.
Shoemaker, James W. Snively, Jr., Charles R. Sterbakov, William E.
Sullivan, Philip S. Thornton, Everett B. Turner. Robert Van Roijen,
Ira Victor, Karl-Heinz Wobig.

viii

INTRODUCTION

A dccision table processor is a software program for translating decision
tables into executable computer programs. Such translators are now
available to translate dccision tables to computer programs for almost
any hardware configuration and programming language desired.

Of course, the tables to be processed must conform to certain
standards for a particular processor—table size, format, words used
in the stubs, and so forth. Some processors require that the entire
computer program be depicted in decision table form; others allow a
mixture of own coding and decision tables. Once the necessary tables
have been structured, the processor will generate the appropriate coding
to achieve the desired result.

Even before the structuring of the tables, the problem must be broken
into usable segments or modules. The tables are usually manually
checked after construction—before the information is keypunched for
input to the computer.

At the computer, the decision table processor is loaded into the
computer, and the decision tables are read. The processor examines
each table and produces coding to accomplish all of the if—then
relationships contained in the table. Once this has been completed, the
processor might call attention to any missing situations, point out any
redundancies, or pinpoint any contradictions within the table.

Each decision table results in a segment of coding. Hence each
segment of the program can be traced directly to the decision table
that caused its generation. Changes can be made to an existing program
with relative ease by chunging one or more decision tables. The effect
of such change on the program is easy to observe and evaluate.

Each program will follow the same type of coding approach. The
coding will be straightforward and free of cute gimmicks and program-
ming tricks reflecting the personality of a particular programmer. Each
programmer should be uble to follow any program in the installation
and make the required changes.

It is generally conceded that there are three types of decision table

ix

x Introduction

processors: (1) The decision table interpreter is basically an object
program written in a machine language. The interpreter is a series of
subprograms. As a decision table is examined, cach situation will cause
a transfer of control to the appropriate subprograni. Upon the completion
of each subprogram, control is returned to th¢ main program. Such
interpreters require a precise language that ullows a very limited
vocabulary. Changes or modifications are madc to the tables them-
selves; consequently the documentation for a program always reflects
the same logic as the running program. Execution time on the computer
for a program generated by an interpreter is usually greater than that
required for handcoded programs.

(2) The decision table translator translates one language into
another. This requires that words used in the dccision tables be words
which may be easily translated into FORTRAN, COBOL, or some similar
compiler language. Again, a precise language is required. An inter-
mediate language is used in the translating, thus requiring longer
compilation time. This also allows certain inecfliciencies to creep into
the translating process, which usually get carricd over into the object
program. Programs can be modified at the interniediate language level,
but if this is done, the documentation will no longer agree with the
running program.

(3) Decision table compilers are capable of tuking a source language
and generating the appropriate instructions for the computer. The
language might be an existing compiler level programming language, or
it may be one specially designed for subject matter specialists using
decision tables. Such compilers usually translatc decision tables into
efficient object programs. Many compilers employ optimizing techniques
as well as numerous checks for contradictions, omissions, and redun-
dancies. When such situations are detected, the compiler will provide
the appropriate diagnostic messages for the user.

Since the terms “decision table processor” and “decision table trans-
lator” have been used interchangeably during recent years, no attempt
has been made in this book to place the various pieces of software into
one of the above categories.

The use of a decision table processor should greatly reduce program-
ming effort, time, and costs within an organization. A program should
require significantly less computer time for compilations and tests before
it is ready to be put into production. Maintenance caused by overlooked
situations or inconsistencies in the program should be reduced.

Decision table software has improved dramatically in the last few

Introduction xi

years. Those knowledgable about decision table processors and their
capabilities generally concede that the quality of programs generated
from decision tables by a processor is now as good as that manually
coded by a better-than-uverage programmer. In some instances, where
a table processor was written to take advantage of certain hardware
quirks, the generated coding actually executes faster than comparable
handcoded jobs.

Some installations have found that with the newer processors intel-
ligent subject matter specialists can be taught to generate their own
programs with relative ease. The amount of training required to teach
them how to work with « decision table processor is only a fraction of
the effort required to teach them a programming language.

In addition to the cost of a decision table processor, which might
range from “free” to more than $40,000, the manager must be prepared
to make other investments in order to achieve the benefits a table
processor can provide. These investments include proper decision table
training for all those who will construct and use decision tables. An
hour’s tutorial by a fellow programmer or analyst is not sufficient.

Management must plan for decision table implementation. The
manager frequently expects too much too soon. People work much more
slowly with a new tool; consequently early jobs should be expected to
require more time than subsequent ones. Implementation planning should
take this into consideration.

Such planning should ulso include the establishment of standards for
the construction and use of decision tables in the organization. Without
such standards, chaos usually reigns.

Decision tables offer « bright future for those who are willing to pay
the price—proper planning, adequate education, and careful selection
of the right processor for the installation’s requirements.

Preface
Acknowledgments

Introduction

Autocoder Decision Table Assembler
Basic Detap

Betab-68

Centab

Cologen

Compact Detap

Computran

Decision Table Generator (Norway)
Decisus

Detab-65

Detab-66

Detab-67

CONTENTS

vii
viii

ix

11
15
17
19
23
25

27

vi Contents

Detab-X

Detap

Detoc

Detran

DTP IV

Filetab

Fortab

Gecom/Tabsol

IBM 1401 Decision Logic Translator
Loboc

Logtab

PET

SMP

SPL

Suntran

System/360 Decision Logic Translator
Tab40

Tab7c

Tab70

Tabsol

29
31
37
43
45
47
49
51
53
57
59
61
65
69
71
73
77
79
81

83

AUTOCODER DECISION TABLE ASSEMBLER

The Autocoder Decision Table Assembler allows the use of decision
tables within the assembly language for certain IBM computers. Con-
sequently the programmer can relatively easily give a compact, yet
readable, representation of complicated logic and its relationships.

Features

Decision tables are permitted within normal as-
sembly language coding.

A separate and distinct Exit area follows the action
stub on each table.

No housekeeping commands are generated to sep-
aralc sequential actions.

Corrections may be made directly to the Auto-
coder coding after it has been assembled.

A pre-edit feature for the decision table cards is
available.

Ouiput coding may be directed onto tape.

Testing of the tables is on a condition-by-con-
dition basis.

2 Decision Table Software

Hardware

Language

Reference

Availability /Cost

Regular Autocoder statements must be used in
stub portions of the tables.

Only limited entry tables arc permitted.

Tables must be sorted into a condition-by-con-
dition test pattern.

Up to 50 lines are allowed for action and exit
statements.

A maximum of 15 rules is permitted in a single
table.

IBM 7070 with a minimum of 5K memory and
six tape units. Can also be used on IBM 1401 (4K
minimum) with Hi-Lo-Equal Compare, Sense
Switches, and card reader/punch.

IBM Autocoder

Autocoder Decision Table Assembler (1.1.002),
The Guide General Program Library.

This decision table assembler is available as a
part of the Guide General Program Library at
no cost.

BASIC DETAP

Information Management Incorporated has a family of three decision
table processors. The processors have certain similarities and certain
differcnces; consequently, they are treated in this book as three sepa-
rate and distinct decision table processors. For information on the
other two processors available from IMI, see the section on Compact
Detap and Detap.

Features Among the features attributed to Basic Detap are
thesc:

Basic Detap converts limited entry decision tables
to Cobol.

Each decision table appears in the Cobol program
as a Note.

Sequence of actions common to several rules are
grouped into paragraphs and coded only once.

Only limited entry tables can be processed.

Initinlization cannot be achieved through a de-
cision table.

Up to S0 conditions may appear in a single table.

3

4 Decision Table Software

Hardware

Language

Availability/Cost

A maximum of 50 actions is allowed in a single
table.

A table may contain up to 50 rules.

Basic Detap is said to be upward compatible with
Compact Detap and Detap

The distributor claims that Basic Detap operates
on any computer that has a Cobol compiler and
a minimum of 32K memory.

Cobol

At the time of this writing. Basic Detap, including
on-site training, users’ manuals, and a year’s main-
tenance, is available at a cost of $5,500. Contact:

Information Managcement, Inc.

447 Battery Street
San Francisco, California 94111

or

11 West 42nd Strect
New York, New York 10036

BETAB-68

Betab (from “beslutstabellen™) first made its appearance in Sweden in
1968. While it appears to be based to a great extent on the Detab
efforts in this country, it is not a Cobol processor. It processes decision
tables to generate Algol output. This should prove interesting to Euro-
pean decision table enthusiasts.

Betab is a single pass system with simultaneous paper tape reading and
punching. Consequently, speed is restricted to the speed of a paper
tape punch (approximatcly 150 characters per second).

Features Betag checks input tables for completeness, con-
tradictions, and redundancies; appropriate diag-
nostic messages are given.

Nested block structure of tables is permitted.

Betab provides an extension to the processing
capabilities of Algol 60.

Most Algol restrictions must be imposed on the
tables. Tables are restricted to a maximum of 21
rules (the upper limit allowed by the range of
positive integers in Algol).

Therc is no stated limit for the number of con-
ditions and actions.

5

6 Decision Table Software

Hardware

Language

Reference

Availability/Cost

Only limited entry tables may be processed.

Betab has been installed on DataSaab D21 and
D22. A minimum of 16K 24-bit words is required.
Computer must also have a paper tape reader
and punch, a lineprinter, and a minimum of four
magnetic tape units.

The processor is written in a mixture of Algol and
of Genius. The Results of the decision table proc-
essing are in Algol 60.

A detailed description of this decision table
processor is available (in Swedish language) in
Beslutstabeller i Algol 60, DataSaab 9006,
A6372.01.23, February 1969

Betab/68 is a part of the DataSaab program li-
brary and is available without cost to DataSaab
users from:

Saab Aktiebolag
DataSaab
Linkoping, Sweden

