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Preface

Audience

Although some familiarity with revision control systems will be good background
material, a reader who is not familiar with any other system will still be able to learn
enough about basic Git operations to be productive in a short while. More advanced
readers should be able to gain insight into some of Git’s internal design and thus master
some of its more powerful techniques.

The main intended audience of this book should be familiar and comfortable with the
Unix shell, basic shell commands, and general programming concepts. :

Assumed Framework

Almost all examples and discussions in this book assume the reader has a Unix-like
system with a command-line interface. The author developed these examples on

Debian and Ubuntu Linux environments. The examples should work under other
environments, such as Mac OS X or Solaris, but the reader can expect slight variations.

A few examples require root access on machines where system operations are needed.
Naturally, in such situations, you should have a clear understanding of the responsi-
bilities of root access.

Book Layout and Omissions

This book is organized as a progressive series of topics, each designed to build upon
concepts introduced earlier. The first 11 chapters focus on concepts and operations
that pertain to one repository. They form the foundation for more complex operations
on multiple repositories covered in the final 10 chapters.

If you already have Git installed or have even used it briefly, then you may not need the
introductory and installation information in the first two chapters, nor even the quick
tour presented in the third chapter.




The concepts covered in Chapter 4 are essential for a firm grasp on Git’s object model.
They set the stage and prepare the reader for a clearer understanding of many of Git’s
more complex operations.

Chapters 5 through 11 cover various topics in more detail. Chapter 5 describes the
index and file management. Chapters 6 and 10 discuss the fundamentals of making
commits and working with them to form a solid line of development. Chapter 7 intro-
duces branches so that you may manipulate several different lines of development from
your one local repository. Chapter 8 explains how Git derives and presents “diffs.”

Git provides a rich and powerful ability to join different branches of development. The
basics of branch merging and resolving merge conflicts are covered in Chapter 9. A key
insight into Git’s model is to realize that all merging performed by Git happens in your
local repository in the context of your current working directory. Chapters 10 and 11
expose some operations for altering, storing, tracking, and recovering daily develop-
ment within your development repository.

The fundamentals of naming and exchanging data with another, remote repository are
covered in Chapter 12. Once the basics of merging have been mastered, interacting
with multiple repositories is shown to be a simple combination of an exchange step
plus a merge step. The exchange step is the new concept covered in this chapter and
the merge step is covered in Chapter 9.

Chapter 13 provides a more philosophical and abstract coverage of repository
management “in the large.” It also establishes a context for Chapter 14 to cover patch
handling when direct exchange of repository information isn’t possible using Git’s
native transfer protocols.

The next four chapters cover advanced topics of interest: the use of hooks (Chap-
ter 15), combining projects and multiple repositories into a superproject (Chap-
ter 16), and interacting with Subversion repositories (Chapter 17).

Chapters 19 and 20 provide some advanced examples and clever tips, tricks, and tech-
niques that may help transform you into a true Git guru.

Finally, Chapter 21 introduces GitHub and explains how Git has enabled a creative,
social development process around version control.

Git is still evolving rapidly because there is an active developer base. It’s not that Git is
so immature that you cannot use it for development; rather, ongoing refinements and
user interface issues are being enhanced regularly. Even as this book was being written,
Git evolved. Apologies if I was unable to keep up accurately.

I do not give the command gitk the complete coverage that it deserves. If you like
graphical representations of the history within a repository, you should explore gitk.
Other history visualization tools exist as well, but they are not covered here either. Nor
am I able to cover a rapidly evolving and growing host of other Git-related tools. I'm
not even able to cover all of Git’s own core commands and options thoroughly in this
book. Again, my apologies.

xii | Preface



Perhaps, though, enough pointers, tips, and direction can be found here to inspire
readers to do some of their own research and exploration!

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.
Constant width
Used for program listings as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.
Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic :
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

oA

This icon signifies a useful hint or a tip.

Furthermore, you should be familiar with basic shell commands to manipulate files
and directories. Many examples will contain commands such as these to add or remove
directories, copy files, or create simple files:

$ cp file.txt copy-of-file.txt
$ mkdir newdirectory

$ Im file

$ rmdir somedir

$ echo "Test line" > file

$ echo "Another line" >> file
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Commands that need to be executed with root permissions appear as a sudo operation:

# Install the Git core package

$ sudo apt-get install git-core

How you edit files or effect changes within your working directory is pretty much up
to you. You should be familiar with a text editor. In this book, I'll denote the process
of editing a file by either a direct comment or a pseudocommand:

# edit file.c to have some new text

$ edit index.html

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Version Control with Git by Jon Loeliger
and Matthew McCullough. Copyright 2012 Jon Loeliger, 978-1-449-31638-9.”

If you feel your use of code examples falls outside fair use or the permission given*
previously, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Saf ari-) Safari Books Online (www.safaribooksonline.com) is an on-demand digital

o library that delivers expert content in both book and video form from the -
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books &rlline offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable
database from ‘publishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco
Press, John Wiley &'Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
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Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course
Technology, and dozens more. For more information about Safari Books Online, please
visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreil.ly/VCWG2e
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

‘Watch us on YouTube: http://www.youtube.com/oreillymedia
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