GithRZA 5l (ZenkR)

Version Control with

'//I/l //
m !IIIIII I!

il
e
i //M% i

i
///5// //l%/l//////l////////,; T
i
i
uaﬁwnmw.','w.s'.z'.z,,:,cy;ﬂ/”u’

it

llll

O’REILLY" Jon Loeliger &

¥ %% HER Matthew McCullough %

B IR

GithR A<=l wam

Version Control with Git

Jon Loeliger & Matthew McCullough &

ImETEmEBE O’REILLY*
L[] T ——

MW REAFHRGT

BHER&KE (CIP) ¥iE

Git A . B2 K. #X(FHP hik (Loeliger, 1),
FE)ERES (McCullough, M) . —REIA . —F: R
A MR EE, 20135

$4JE . Version Control with Git, 2E

ISBN 978-7-5641-4196-7

LOG ILOF- @F- ILOKHFELA-BF
it — %3 V. © TP311.56

o E R AR B $518 CIP BdR g (2013) 350902315

LA RUBUR#E TEAL & RIS
B 10-2013-1225

©2012 by O’Reilly Media, Inc.

Reprint of the English Edition, jointly published by O’Reilly Media, Inc. and Southeast University Press,
2013. Authorized reprint of the original English edition, 2013 O’Reilly Media, Inc., the owner of all rights
to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.

% & M i O’Reilly Media, Inc. % j& 2012,

EXH MRS A& bk 3 MR B R 2013, LB PR A i MR Ao 4K 45 A% 2] o B A= 4K B AR) PR A —— O’Reilly
Media, Inc. #5#% 7T,

TTUCAECET PL NPT RS E S DL S LN

Git A %R (RENR)

HIREAT: FREAFEHRE

o hk. EAREME2S Hi4s: 210096
H AR A LEH

=] sk : http://www.seupress.com

B, FHR{4: : press@seupress.com

ER Rl: b ENRIA RS R

. 7872k x 980Xk 16 F A
28.5

558<F=¢

201345 A 1 kR

2013 4 5 A% 1 IRENK

. ISBN 978-7-5641-4196-7

. 62.005¢ ()
AHEBEANERRAE, HEHESEHWBER, BiF (f5H): 025-83791830

LR EUR
sibatal o 8o

Preface

Audience

Although some familiarity with revision control systems will be good background
material, a reader who is not familiar with any other system will still be able to learn
enough about basic Git operations to be productive in a short while. More advanced
readers should be able to gain insight into some of Git’s internal design and thus master
some of its more powerful techniques.

The main intended audience of this book should be familiar and comfortable with the
Unix shell, basic shell commands, and general programming concepts. :

Assumed Framework

Almost all examples and discussions in this book assume the reader has a Unix-like
system with a command-line interface. The author developed these examples on

Debian and Ubuntu Linux environments. The examples should work under other
environments, such as Mac OS X or Solaris, but the reader can expect slight variations.

A few examples require root access on machines where system operations are needed.
Naturally, in such situations, you should have a clear understanding of the responsi-
bilities of root access.

Book Layout and Omissions

This book is organized as a progressive series of topics, each designed to build upon
concepts introduced earlier. The first 11 chapters focus on concepts and operations
that pertain to one repository. They form the foundation for more complex operations
on multiple repositories covered in the final 10 chapters.

If you already have Git installed or have even used it briefly, then you may not need the
introductory and installation information in the first two chapters, nor even the quick
tour presented in the third chapter.

The concepts covered in Chapter 4 are essential for a firm grasp on Git’s object model.
They set the stage and prepare the reader for a clearer understanding of many of Git’s
more complex operations.

Chapters 5 through 11 cover various topics in more detail. Chapter 5 describes the
index and file management. Chapters 6 and 10 discuss the fundamentals of making
commits and working with them to form a solid line of development. Chapter 7 intro-
duces branches so that you may manipulate several different lines of development from
your one local repository. Chapter 8 explains how Git derives and presents “diffs.”

Git provides a rich and powerful ability to join different branches of development. The
basics of branch merging and resolving merge conflicts are covered in Chapter 9. A key
insight into Git’s model is to realize that all merging performed by Git happens in your
local repository in the context of your current working directory. Chapters 10 and 11
expose some operations for altering, storing, tracking, and recovering daily develop-
ment within your development repository.

The fundamentals of naming and exchanging data with another, remote repository are
covered in Chapter 12. Once the basics of merging have been mastered, interacting
with multiple repositories is shown to be a simple combination of an exchange step
plus a merge step. The exchange step is the new concept covered in this chapter and
the merge step is covered in Chapter 9.

Chapter 13 provides a more philosophical and abstract coverage of repository
management “in the large.” It also establishes a context for Chapter 14 to cover patch
handling when direct exchange of repository information isn’t possible using Git’s
native transfer protocols.

The next four chapters cover advanced topics of interest: the use of hooks (Chap-
ter 15), combining projects and multiple repositories into a superproject (Chap-
ter 16), and interacting with Subversion repositories (Chapter 17).

Chapters 19 and 20 provide some advanced examples and clever tips, tricks, and tech-
niques that may help transform you into a true Git guru.

Finally, Chapter 21 introduces GitHub and explains how Git has enabled a creative,
social development process around version control.

Git is still evolving rapidly because there is an active developer base. It’s not that Git is
so immature that you cannot use it for development; rather, ongoing refinements and
user interface issues are being enhanced regularly. Even as this book was being written,
Git evolved. Apologies if I was unable to keep up accurately.

I do not give the command gitk the complete coverage that it deserves. If you like
graphical representations of the history within a repository, you should explore gitk.
Other history visualization tools exist as well, but they are not covered here either. Nor
am I able to cover a rapidly evolving and growing host of other Git-related tools. I'm
not even able to cover all of Git’s own core commands and options thoroughly in this
book. Again, my apologies.

xii | Preface

Perhaps, though, enough pointers, tips, and direction can be found here to inspire
readers to do some of their own research and exploration!

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.
Constant width
Used for program listings as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.
Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic :
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

oA

This icon signifies a useful hint or a tip.

Furthermore, you should be familiar with basic shell commands to manipulate files
and directories. Many examples will contain commands such as these to add or remove
directories, copy files, or create simple files:

$ cp file.txt copy-of-file.txt
$ mkdir newdirectory

$ Im file

$ rmdir somedir

$ echo "Test line" > file

$ echo "Another line" >> file

Preface | xiii

Commands that need to be executed with root permissions appear as a sudo operation:

Install the Git core package

$ sudo apt-get install git-core

How you edit files or effect changes within your working directory is pretty much up
to you. You should be familiar with a text editor. In this book, I'll denote the process
of editing a file by either a direct comment or a pseudocommand:

edit file.c to have some new text

$ edit index.html

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Version Control with Git by Jon Loeliger
and Matthew McCullough. Copyright 2012 Jon Loeliger, 978-1-449-31638-9.”

If you feel your use of code examples falls outside fair use or the permission given*
previously, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Saf ari-) Safari Books Online (www.safaribooksonline.com) is an on-demand digital

o library that delivers expert content in both book and video form from the -
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books &rlline offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable
database from ‘publishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco
Press, John Wiley &'Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe

xiv | Preface

Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course
Technology, and dozens more. For more information about Safari Books Online, please
visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreil.ly/VCWG2e
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

‘Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

This work would not have been possible without the help of many other people. I'd
like to thank Avery Pennarun for contributing substantial material to Chapters 15, 16,
and 18. He also contributed some material to Chapters 4 and 9. His help was appre-
ciated. I'd like to thank Matthew McCullough for the material in Chapters 17 and 21,
assorted suggestions, and general advice. Martin Langhoff is paraphrased with
permission for some repository publishing advice in Chapter 13, and Bart Massey’s tip
on keeping a file without tracking is also used with permission. I'd like to publicly thank
those who took time to review the book at various stages: Robert P. J. Day, Alan Hasty,
Paul Jimenez, Barton Massey, Tom Rix, Jamey Sharp, Sarah Sharp, Larry Streepy, Andy
Wilcox, and Andy Wingo. Robert P. J. Day, thankfully, took the time to review both
editions of the book front to back.

Also, I'd like to thank my wife Rhonda, and daughters Brandi and Heather, who pro-
vided moral support, gentle nudging, Pinot Noir, and the occasional grammar tip. And

Preface | xv

thanks to Mylo, my long-haired dachshund who spent the entire writing process curled
up lovingly in my lap. I'd like to add a special thanks to K. C. Dignan, who supplied
enough moral support and double-stick butt-tape to keep my behind in my chair long
enough to finish this book!

Finally, I would like to thank the staff at O’Reilly as well as my editors, Andy Oram
and Martin Streicher.

Attributions

Linux® is the registered trademark of Linus Torvalds in the United States and other
countries.

PowerPC® is a trademark of International Business Machines Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

xvi | Preface

Table of Contents

o T S AR e SN S I - S 2 e A e R xi
T R R AR e - IRk] SRSy s S 1
Background 1
The Birth of Git 2
Precedents 4
Timeline 6
What’s in a Name? 7
A R Dt S SR R eab e e PR CODme Rt 9
Using Linux Binary Distributions 9
Debian/Ubuntu 9

Other Binary Distributions 10
Obtaining a Source Release 11
Building and Installing 12
Installing Git on Windows 13
Installing the Cygwin Git Package 14
Installing Standalone Git (msysGit) 15
ST TR ... oo s vvovcvs womsovitsivins siorinbiemibralleancs b sind Bt vyl e 45 19
The Git Command Line 19
Quiek Introduction to Using Git 21
Creating an Initial Repository 21
Adding a File to Your Repository 22
Configuring the Commit Author 24
Making Another Commit 24
Viewing Your Commits 25
Viewing Commit Differences 26
Removing and Renaming Files in Your Repository 26
Making a Copy of Your Repository 27
Configuration Files 28

Configuring an Alias
< “Inquiry : ¢

Lt 07 T R R e S G S R SRR

Basic Concepts
Repositories
Git Object Types
Index
Content-Addressable Names
Git Tracks Content
Pathname Versus Content
Pack Files
Object Store Pictures
Git Concepts at Work
‘Inside the .git Directory
Objects, Hashes, and Blobs
Files and Trees
A Note on Git’s Use of SHA1
Tree Hierarchies
Commits
Tags

File Managementandthelndexccvvvvvnnnnnnnn.

It’s All About the Index
File Classifications in Git
Using git add
Some Notes on Using git commit
Using git commit --all
Writing Commit Log Messages
Using git rm
Using git mv
A Note on Tracking Renames
The .gitignore File
A Detailed View of Git’s Object Model and Files

Atomic Changesets
Identifying Commits
Absolute Commit Names
refs and symrefs
Relative Commit Names
Commit History
Viewing Old Commits

30
30

31
31
31
32
33
33
34
35
36
36
39
39
40
41
42
43
44
46

47
48
48
50
52
52
54
54
56
3%
58
60

65
66
67
67
68
69
72
72

iv | Table of Contents

Commit Graphs
Commit Ranges
Finding Commits
Using git bisect
Using git blame
Using Pickaxe

Branehies Sr... ... i oo R s R Bee st Bl

Reasons for Using Branches

Branch Names
Dos and Don’ts in Branch Names

Using Branches

Creating Branches

Listing Branch Names

Viewing Branches

Checking out Branches
A Basic Example of Checking out a Branch
Checking out When You Have Uncommitted Changes
Merging Changes into a Different Branch
Creating and Checking out a New Branch
Detached HEAD Branches

Deleting Branches

T Tt Ll AV N SNt

Forms of the git diff Command

Simple git diff Example

git diff and Commit Ranges

git diff with Path Limiting

Comparing How Subversion and Git Derive diffs

| AR R SRR SPORRIREY Ve P L (ST

Merge Examples
Preparing for a Merge
Merging Two Branches
A Merge with a Conflict
Working with Merge Conflicts
Locating Conflicted Files
Inspecting Conflicts
How Git Keeps Track of Conflicts
Finishing Up a Conflict Resolution
Aborting or Restarting a Merge
Merge Strategies
Degenerate Merges

74
78
83
83
87
88

.............. 89

89
90
91
91
93
94
94
97
97
98
2
101
102
103

............. 107

108
112
1S
117
119

3 eaun b 121

121
122
122
124
128
129
129
134
135
137
137
140

Table of Contents | v

Normal Merges 142

Specialty Merges 143
Applying Merge Strategies 144
Merge Drivers 145
How Git Thinks About Merges 146
Merges and Git’s Object Model 146
Squash Merges 147
Why Not Just Merge Each Change One by One? 148
B ARDONEEOMIIS . . i v o ina b ch v e vt isdoanirmes snv LRV S DENIS LS 151
Caution About Altering History 152
Using git reset 154
Using git cherry-pick 161
Using git revert 163
reset, revert, and checkout 164
Changing the Top Commit 165
Rebasing Commits 167
Using git rebase -i 170
rebase Versus merge 174
T TheSORbandtheRRAIg < .oooiv oo S0FTINRSIDA S PIRZE . Lon 181
The Stash 181
The Reflog 189
I RO RRRREROIES i co oo oo iconns s i VARRNINNGAIG IE UL ETRG 195
Repository Concepts 196
Bare and Development Repositories 196
Repository Clones 197
Remotes 198
Tracking Branches 199
Referencing Other Repositories 200
Referring to Remote Repositories 200
The refspec 202
Example Using Remote Repositories 204
Creating an Authoritative Repository 205
Make Your Own Origin Remote 206
Developing in Your Repository 208
Pushing Your Changes 209
Adding a New Developer 210
Getting Repository Updates 212
Remote Repository Development Cycle in Pictures 217
Cloning a Repository 217
Alternate Histories 218

vi | Table of Contents

13.

Repository Management
A Word About Servers
Publishing Repositories

Non-Fast-Forward Pushes
Fetching the Alternate History
Merging Histories

Merge Conflicts

Pushing a Merged History

Remote Configuration

Using git remote
Using git config
Using Manual Editing

~ Working with Tracking Branches

Creating Tracking Branches
Ahead and Behind

Adding and Deleting Remote Branches
Bare Repositories and git push

Repositories with Controlled Access
Repositories with Anonymous Read Access
Repositories with Anonymous Write Access
Publishing Your Repository to GitHub

Repository Publishing Advice
Repository Structure

The Shared Repository Structure
Distributed Repository Structure
Repository Structure Examples

Living with Distributed Development

Changing Public History
Separate Commit and Publish Steps
No One True History

Knowing Your Place

Upstream and Downstream Flows
The Maintainer and Developer Roles
Maintainer—Developer Interaction
Role Duality

Working with Multiple Repositories

Your Own Workspace

Where to Start Your Repository

Converting to a Different Upstream Repository
Using Multiple Upstream Repositories

Forking Projects

219
221
222
223
223
223
224
225
226
284
227
230
231
232

................. 235

235
236
236
238
242
242
243
244
244
244
246
248
248
249
249
250
251
251
252
253
254
254
255
256
257
259

Table of Contents | vii

11U Y U] e e (S SR e T e Rl 0 e e e 263

Why Use Patches? 264
Generating Patches 265
Patches and Topological Sorts 272
Mailing Patches 273
Applying Patches 276
Bad Patches 283
Patching Versus Merging 283
B DN = aitlio v o cxmenibrnnin s s sRRT AT SR x TRy £ o0 o s ik e s n s 285
Installing Hooks 287
Example Hooks 287
Creating Your First Hook 288
Available Hooks 290
Commit-Related Hooks 290
Patch-Related Hooks ‘ - 29
Push-Related Hooks 292
Other Local Repository Hooks 294
T EOMMINE RIS .. . ivvsorinsrinapiissvesnvsntos enssryresibnnesie 295
The Old Solution: Partial Checkouts 296
The Obvious Solution: Import the Code into Your Project 297
Importing Subprojects by Copying 299
Importing Subprojects with git pull -s subtree 299
Submitting Your Changes Upstream 303
The Automated Solution: Checking out Subprojects Using Custom Scripts 304
The Native Solution: gitlinks and git submodule 305
Gitlinks : 306
The git submodule Command 308
3o S BOSE REMCTIONE < iricsns o s saisinipon on 6o s ensrpinbesosipsnsiagon e 313
Submodule Commands 314
Why Submodules? 315
Submodules Preparation 316
Why Read Only? 316
Why Not Read Only? 317
Examining the Hashes of Submodule Commits 317
Credential Reuse 318
Use Cases 318
Multilevel Nesting of Repos 319
Submodules on the Horizon 320

viii | Table of Contents

18. Using Git with Subversion Repositories

19.

20.

Example: A Shallow Clone of a Single Branch
Making Your Changes in Git
Fetching Before Committing
Committing Through git svn rebase

Pushing, Pulling, Branching, and Merging with git svn

Keeping Your Commit IDs Straight
Cloning All the Branches
Sharing Your Repository
Merging Back into Subversion
Miscellaneous Notes on Working with Subversion
svn:ignore Versus .gitignore
Reconstructing the git-svn Cache

Advanced Manipulationsccocviiiinnnnnn.

Using git filter-branch
Examples Using git filter-branch
filter-branch Pitfalls
How I Learned to Love git rev-list
Date-Based Checkout
Retrieve Old Version of a File
Interactive Hunk Staging
Recovering a Lost Commit
The git fsck Command
Reconnecting a Lost Commit

Tips, Vricks, and Techmlgueso ciiianiiiiviiians

Interactive Rebase with a Dirty Working Directory
Remove Left-Over Editor Files
Garbage Collection
Split a Repository
Tips for Recovering Commits
Subversion Conversion Tips
General Advice
Remove a Trunk After an SVN Import
Removing SVN Commit IDs
Manipulating Branches from Two Repositories
Recovering from an Upstream Rebase
Make Your Own Git Command
Quick Overview of Changes
Cleaning Up
Using git-grep to Search a Repository
Updating and Deleting refs

321
324
325
326
327
328
329
331
332
334
334
334

................. 337

337
339
344
349
345
348
350
360
361
365

................ 367

367
368
368
370
371
372
372
372
373
374
374
376
376
37T
378
380

Table of Contents | ix

Following Files that Moved 380

Keep, But Don’t Track, This File 381
Have You Been Here Before? 382
0 GRandGIRIUDo0000 000000 oo anadinineh iy dansAh Lo Moantes 3 s 385
Repo for Public Code 385
Creating a GitHub Repository 388
Social Coding on Open Source 390
Watchers 391
News Feed 392
Forks 392
Creating Pull Requests 394
Managing Pull Requests 396
Notifications 398
Finding Users, Projects, and Code 401
Wikis 402
GitHub Pages (Git for Websites) 403
In-Page Code Editor 405
Subversion Bridge 407
Tags Automatically Becoming Archives 408
Organizations 409
REST API 410
Social Coding on Closed Source 411
Eventual Open Sourcing 411
Coding Models 412
GitHub Enterprise 414
GitHub in Sum 416
T IR ey e A RPN O) 5 S e T e ok 417

x | Tableof Contents

