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Symmetry and Condensed Matter Physicé

Unlike existing texts, this book blends for the first time three topics in physics: symmetry,
condensed matter physics, and computational methods, into one pedagogical textbook. It
includes new concepts in mathematical crystallography; experimental methods capitalizing
on symmetry aspects; nonconventional applications such as Fourier crystallography, color
groups, quasi-crystals and incommensurate systems; and concepts and techniques behind
the Landau theory of phase transitions.

The textbook adopts and develops a computational approach to the application of group
theoretical techniques to solving symmetry-related problems. This dramatically alleviates
the need for intensive calculations, even for the simplest systems, usually found in the
presentation of symmetry. Writing computer programs helps the student achieve a firm
understanding of the underlying concepts, and sample programs, based on Mathematica®,
are presented throughout the book.

Containing over 150 exercises, this textbook is ideal for graduate students in condensed
matter physics, materials science, and chemistry. Solutions and computer programs are
available online at www.cambridge.org/9780521828451.

MicHAEL EL-BATANOUNY is a Professor in the Department of Physics at Boston Uni-
versity. His research area is experimental surface physics and he has written numerous
papers on solid state physics and surface physics.

FREDERICK WOOTEN (1928-2004) was Professor of Physics and Chair of the Depart-
ment of Applied Science at the University of California, Davis. He is the author of Optical
Properties of Solids and numerous articles in the fields of solid state physics and materials
science.
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Preface

Pedagogical presentation and analysis of the symmetry aspects of physical systems in
terms of group theoretical concepts and methodology has been evolving over the past six
or seven decades, since the pioneering textbooks by Weyl and Wigner first appeared. This
constantly evolving pedagogy has resulted in over a hundred textbooks on the subject. The
impetus behind these efforts has stemmed from the general recognition of the invaluable
role that the application of such methodology plays in determining and predicting the
properties of a physical system.

Symmetry concepts provide a very useful means for systematizing the description of
a physical system in terms of its energy and momentum, and other relevant physical
quantities. Furthermore, the incipient methodologies furnish a very efficient framework
for classifying its physical states, and a crucial machinery for simplifying the intervening
numerical applications of physical laws. By means of the irreducible representations of its
symmetry group, one can classify physical states and particles in a logical way and establish
selection rules, which predict restrictions on possible transitions between different physical
states. The use of symmetry also simplifies numerical calculations, for example, in solving
the Schrédinger equation for condensed matter systems. Moreover, from the symmetry
properties of a physical system, one can make conclusions about the values of measurable
physical quantities, and, conversely, one can trace a symmetry group of a system from
observed regularities in measured quantities. There is also an intimate connection between
symmetry, invariance and dynamical laws.

Despite all these merits, the application of symmetry methods has been seriously ham-
pered by the need for painstaking and tedious calculations, even when dealing with the
simplest group symmetries. This drawback has led many students and practitioners in
the area of condensed matter physics to shy away from learning the fundamentals of this
invaluable discipline.

In the recent past, a number of new ideas, techniques and approaches have emerged
that have yet to be incorporated in textbooks on symmetry. We believe that the adoption
of these novel aspects within a new pedagogical approach would dramatically simplify
existing instructional procedures, remove the cumbersome calculational barriers that tend
to severely limit the scope of examples and exercises, and provide a conduit for elucidating
and unifying seemingly diverse aspects under one umbrella. We attempt to implement such
an approach in this book, and present the necessary tools for its application in diverse
areas in condensed matter physics.

xi



xii Preface

One of the novel features characterizing this book and setting it apart from others is
that it adopts and develops at the outset a computational approach to the theory of finite
groups and its applications in physics. A computational approach to group theory has
several significant advantages. First, it eliminates traditional difficulties encountered in
problem solving. Second, it provides an alternative pedagogical process whereby a student
would learn the material through writing computer programs: A logical prerequisite for
program writing is that the student must have acquired a detailed understanding of the
material at hand!

The modern basis for computational methods in group and representation theories dates
from the 1960s, with the development of computer algorithms for generating permuta-
tion groups and studying their structure, and with the introduction of John Dixon’s
method for the ezact calculation of “characters” of finite groups, which can be easily
implemented on a computer. Currently, there are at least two computational systems that
are well suited for the analysis of symmetry groups: GAP and MAGMA; they can be
accessed through the web. However, here we shall follow the methods proposed by Stig
Flodmark and Esko Blokker. These authors, recognizing the importance and utility of
Dixon’s method, developed computer algorithms and programs to implement Dixon’s exact
character method, and to use the results to construct the corresponding unitary irreducible
matrix representatiohs‘

We develop the underlying ideas, algorithms and methodology for such calculations in
the first seven chapters. The reader is first exposed to the relevant conceptual aspects,
then introduced to corresponding computational algorithms, and instructed in methods for
implementing these algorithms into programs and subroutines. We find that Mathematica,
because of its capability to handle symbolic and combinatorial manipulations, provides a
natural and convenient environment for the development of such programs. So, the main
instructions in the computational approach will be based on the language of Mathematica.
However, every student will be encouraged to develop programs in any language he or she
is comfortable with. Our versions of all the Mathematica-based computational programs
will be posted on a website, together with data files relevant to space- and point-groups.

Our work is intended to make the computational approach to group theory available
to a wider audience. It is aimed at students in the physical sciences: physics, chemistry,
materials science and, possibly, some disciplines in engineering. We also have in mind the
working professional who would like to learn the subject or who already knows it but is
unfamiliar with the modern computational approach.

In addition to adopting computational techniques, we introduce and develop several
concepts that have, at best, been marginally treated in textbooks on symmetry, to date.

We develop the ideas of group actions on systems and their decomposition into orbits
and strata. We demonstrate and stress the fundamental relevance of the study of the
corresponding orbit space and of the set of strata to physical problems. For example,
we demonstrate how the notions of the star of the wavevector, which appears in the
theory of representations of space-groups, of Wyckoff positions, which are encountered
in crystallography, and of images of the order-parameter of a phase transition are all
manifestations of orbits. Thus, we inadvertently apply these concepts to different domains
of condensed matter physics, without realizing that they are actually decompositions into
orbits and strata made under different names, and, in fact they should be unified under
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one umbrella. Thus, linear representations, which are engendered by group action on a
basis set, are just a particular case of group actions. Group actions are introduced in
Chapter 6. Subsequently, their use and appearance are stressed when appropriate.

In Chapter 6, we also introduce the concept of symmetry-projection operators and
develop the computational tools for their construction, using their hermiticity and idem-
potency properties to cast the corresponding matrices into the form of a simple eigenvalue
problem.

In Chapter 8, we introduce the notions of subgroups, cosets, normal subgroups, product
groups, Kronecker products, and Clebsch-Gordan series; and end by presenting techniques
for determining the Clebsch-Gordan coeflicients. In Chapter 9, we explore the processes
of induction and subduction of irreducible representations (Irreps) and the concept of
compatibilities relating these Irreps.

In Chapter 10, we present a long and comprehensive exposé of crystallography. The
novel feature of this chapter is the detailed presentation of concepts in mathematical
crystallography. These include a detailed discussion of arithmetic holohedries and classes,
as well as Bravais classes, classification of space-groups with respect to affine conjugations,
site-symmetries, and Wyckoff positions and sets. Another unique feature of this chapter
is a section on Fourier crystallography, which is one of the two methods used to study the
symmetries of quasi-crystals in Chapter 18. In Chapter 11, we develop the machinery for
determining the Irreps of symmorphic and nonsymmorphic space-groups.

In Chapter 12, we introduce time-reversal symmetry, and discuss the concepts of double-
groups. We include in this chapter a long section on color, or Shubnikov, groups and
another section detailing the construction of corepresentations. The section on the color
groups includes dichromatic (black and white) point-groups, lattices and space-groups.
It also discusses the extension of these concepts to polychromatic symmetries. Another
section on crystal-field theory is presented and extended to cover the case of dichro-
matic symmetry. We end this chapter with a detailed discussion of the manifestation of
time-reversal symmetry in transport properties, which is elegantly cast in the Onsager
reciprocity relations.

The remaining chapters, 13-18, are dedicated to applications in diverse fields of con-
densed matter physics. We have extended the applications beyond the usual topics taken
up in most texts on the subject. In Chapter 13 we develop the theory of tensors, present
techniques for the construction of symmetry-adapted tensors, and finally present a catalog
of the different material tensors. We end this chapter with an exposé of tensor fields and
their relation to symmetry projection operators.

Chapter 14 develops the basic principles of the electronic structure of solids and meth-
ods for computation. The final section presents how the special features of the electronic
structure of magnetically ordered systems can be viewed and classified in terms of corep-
resentations. Chapter 15 develops methods for computing and classifying the dynamical
properties of solids and solid surfaces.

Chapter 16 is dedicated to the discussion of symmetry-based experimental tech-
niques such as neutron and atom scattering, angle-resolved photoemission, and Raman
spectroscopy.
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The Landau theory of phase transitions is discussed in detail in Chapter 17. Applica-
tions to commensurate-incommensurate and magnetic phase transitions are given. A long
section is devoted to methods of construction of the Landau free energy, including ones
hased on the theory of invariant polynomials, group action, and order-parameter image
oTOupSs.

Finally, Chapter 18 addresses the fundamental aspects of the symmetry of quasi-crystals
and incommensurate systems. The symmetries of these systems are developed along two
tracks. First, the concepts of hyperspace symmetries and their projection onto the natu-
ral lower-dimensional spaces are presented. Second, the application of the techniques of
IFourier space crystallography, developed in Chapter 10, are discussed.

The main emphasis, throughout this book, is on exposing the conceptual building blocks
of this mathematical theory of symmetry. Consequently, we frequently skip over long
detailed mathematical proofs which can be found in a multitude of textbooks. Instead, we
point the reader to references where such proofs are clearly presented. Moreover, in con-
trast to previous texts on the subject, the different aspects of group theory are presented
wherever they are needed rather than being lumped into one single exposé. This has the
merit of associating a certain aspect of the theory with a tangible physical attribute. Thus,
for example, we defer the introduction of cosets and invariant subgroups till we discuss
space-groups, where they find immediate application.

Our interest throughout is in clarity and simplicity rather than elegance. We have striven
to meet the needs of the beginner who must work through the gory details of many simple
examples, much as we ourselves did in trying to learn the subject matter. We do not wish
to hide these details in compact mathematical notation.
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1
Symmetry and physics

1.1 Introduction

The application of group theory to study physical problems and their solutions provides a
formal method for exploiting the simplifications made possible by the presence of symme-
try. Often the symmetry that is readily apparent is the symmetry of the system/object
of interest, such as the three-fold axial symmetry of an NH3 molecule. The symmetry
exploited in actual analysis is the symmetry of the Hamiltonian. When alluding to sym-
metry we usually include geometrical, time-reversal symmetry, and symmetry associated
with the exchange of identical particles.

Conservation laws of physics are rooted in the symmetries of the underlying space and
time. The most common physical laws we are familiar with are actually manifestations of
some universal symmetries. For example, the homogeneity and isotropy of space lead to
the conservation of linear and angular momentum, respectively, while the homogeneity of
time leads to the conservation of energy. Such laws have come to be known as universal
conservation laws. As we will delineate in a later chapter, the relation between these clas-
sical symmetries and corresponding conserved quantities is beautifully cast in a theorem
due to Emmy Noether.

At the day-to-day working level of the physicist dealing with quantum mechanics, the
application of symmetry restrictions leads to familiar results, such as selection rules and
characteristic transformations of eigenfunctions when acted upon by symmetry operations
that leave the Hamiltonian of the system invariant.

In a similar manner, we expect that when a physical system/object is endowed with
special symmetries, these symmetries forge conservation relations that ultimately deter-
mine its physical properties. Traditionally, the derivation of the physical states of a system
has been performed without invoking the symmetry properties, however, the advantage
of taking account of symmetry aspects is that it results in great simplification of the
underlying analysis, and it provides powerful insight into the nature and the physics of
the system. The mathematical framework that translates these symmetries into suitable
mathematical relations is found in the theory of groups and group representations. This
is the subject we will try to elucidate throughout the chapters of this book.

Let us begin with a tour de force, exploring the merits of invoking symmetry aspects
pertinent to familiar but simple problems. We start by reminding ourselves of the triv-
ial example of using symmetry, or asymmetry, to simplify the evaluation of an integral.



2 Symmetry and physics

Consider

+b
/ sinzdr = 0.

-b

We know this to be true because sin z is an odd function; sin(—z) = — sin(z). In evalu-
ating this integral, we have taken advantage of the asymmetry of its integrand. In order to
cast this problem in the language of symmetry we introduce two mathematical operations:
I, which we will identify later with the operation of inversion, and which, for now, changes
the sign of the argument of a function, i.e. I f(z) = f(—z); and E, which is an identity
operation, E f(z) = f(z). This allows us to write

+b b b
/ sinz dx =/ (E +I) sin(z) dz = / (14 (-1)) sin(z) dz = 0.
—b 0 0
Figure 1.1 shows schematically the plane of integration, with ¢ and & indicating the sign
of the function sinz.

We may introduce a more complicated integrand function f(z,y), and carry the inte-
gration over the equilateral triangular area shown in Figure 1.2.

Fig. 1.1. The asymmetric function sin .

Fig. 1.2. Integration domain.
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Making use of the 3-fold symmetry of the triangle, which includes rotations by multiples
of 27 /3, as well as reflections shown in Figure 1.3, we write the integral in the form

/ flz,y)dzdy = / (E 4 O@2ry3) + Otanysy + 01 + 02 + 03)
triangle

wedge

X f(z,y) dz dy,

where the Os represent counterclockwise rotations by the angle specified in the suffix.
and the os are defined in Figure 1.3. Now, if the function f(z,y) possesses a symmetry
which can be associated with that of the triangle, as for example shown in Figure 1.4, the
integral vanishes.

Later, we will see how to reach similar conclusions in the case of selection rules, for
example, where the situation may be much more complicated.

Next, we present a simple example to demonstrate how to invoke symmetry to sim-
plify the solution of dynamical problems. We consider a system of two masses and three
springs as illustrated in Figure 1.5. Assume both masses to be equal to m and that
all springs have the force constant . In that case, the Hamiltonian, which is the

LA A A,

Fig. 1.3. Symmetry operations of an equilateral triangle.

QA

Fig. 1.4. Some possible symmetries of f(z,y) on an equilateral triangle.




