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Foreword

I was excited to preview this book on using Python for system administration. I
remembered how I felt when I discovered Python after many years of programming in
other languages: it was like a breath of spring air and the warmth of the sun after a long
winter indoors. Code was suddenly easy and fun to write again, and I finished programs
much more quickly than before.

As a system administrator, most of my own Python use is for system and network
management tasks. [ already knew how useful a good book focusing on system ad-
ministration with Python would be. I am happy to say that this is that book. Overall,
Noah and Jeremy have created an interesting, intelligent work on Python thatis planted
firmly in the system administration sphere. I found the book both very useful and en-
joyable to read.

The two opening chapters are a great introduction to Python for system administrators
(and others) who are new to Python. I consider myself an intermediate Python pro-
grammer, and I learned a lot from the book. I suspect even Python wizards will come
across a few new tricks in here. I can especially recommend the chapters on networking
and managing network services, SNMP, and management of heterogeneous systems as
particularly useful and well focused on nontrivial, real-world tasks that system admin-
istrators face every day.

—Zleen Frisch, July 2008
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Preface

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.
Constant width
Used for program listings, in text to refer to program elements, such as variable or
function names, databases, data types, environment variables, statements, utilities,
keywords, utilities, and modules.
Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

o o

o This icon signifies a tip, suggestion, or general note.
AN
\‘\‘ :‘
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code that
is included in this book in your programs and documentation. You do not need to
contact us for permission unless you're reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission; selling or distributing a CD-ROM of examples from O’Reilly

xiii



books does require permission. Answering a question by citing this book and quoting
example code does not require permission; incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN, for example: “Python for Unix and Linux System Admin-

istration by Noah Gift and Jeremy M. Jones. Copyright 2008 Noah Gift and Jeremy M.
Jones, 978-0-596-51582-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

.« When you see a Safari® Books Online icon on the cover of your favorite
Safari 4 Y

sawonne  technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/9780596515829
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com
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CHAPTER 1
Introduction

Why Python?

If you are a system administrator, it is likely that you have encountered Perl, Bash, ksh,
or some other scripting language. You may have even used one or more yourself.
Scripting languages are often used to do repetitive, tedious work at a rate and with an
accuracy that far surpass what you could accomplish without them. All languages are
tools. They are simply a means to get work done. They have value only insofar as they
help you get your job done better. We believe that Python is a valuable tool, specifically
because it enables you to get your work done efficiently.

So is Python better than Perl, Bash, Ruby, or any other language? It’s really difficult to
put that sort of qualitative label on a programming language, since the tool is so closely
tied to the thought process of the programmer who is using it. Programming is a sub-
jective, deeply personal activity. For the language to be excellent, it must fit the person
usingit. So we’re not going to argue that Python is better, but we will explain the reasons
that we believe Python can be an excellent choice. We’ll also explain why it is a great
fit for performing sysadmin tasks.

The first reason that we think that Python is excellent is that it is easy to learn. If a
language can’t help you become productive pretty quickly, the lure of that language is
severely diminished. Why would you want to spend weeks or months studying a lan-
guage before you are able to write a program that does something useful? This is espe-
cially the case for sysadmins. If you are a sysadmin, your work can pile up faster than
you can unpile it. With Python, you can start writing useful scripts literally in hours
rather than in days or weeks. If you can’t learn a language quickly enough to start
writing scripts with it almost immediately, you should strongly question whether you
should be learning it.

However, a language that is easy to learn but doesn’t allow you to do fairly complex
tasks isn’t worth much either. So the second reason that we consider Python to be an
excellent programming language is that, while it lets you start simply, it also allows you
to perform tasks that are as complex as you can imagine. Do you need to read through
a logfile line by line and pull out some pretty basic information? Python can handle




that. Or do you need to parse through a logfile, extract every piece of information that
it provides, compare usage from each IP address in this logfile to usage in each logfile
(which are stored in a relational database, by the way) from the past three months, and
then store the results to a relational database? Sure, Python can do that as well. Python
is being used on some pretty complex problems, such as analysis of genomic sequences,
multithreaded web servers, and heavy duty statistical analysis. You may never have to
work on anything like that, but it’s nice to know that when you need to do complex
things, the language is able to work with you.

Additionally, if you are able to perform complex operations, but the maintainability of
your code suffers along the way, that isn’t a good thing. Python doesn’t prevent code
maintenance problems, but it does allow you to express complex ideas with simple
language constructs. Simplicity is a huge factor in writing code that is easy to maintain
later. Python has made it pretty simple for us to go back over our own code and work
on it after we haven’t touched it in months. It has also been pretty simple for us to work
on code that we haven’t seen before. So the language, that is the language’s syntax and
common idioms, are clear and concise and easy to work with over long periods of time.

The next reason we consider Python to be an excellent language is its readability.
Python relies on whitespace to determine where code blocks begin and end. The in-
dentation helps your eyes quickly follow the flow of a program. Python also tends to
be “word-based.” By that we mean that while Python uses its share of special characters,
features are often implemented as keywords or with libraries. The emphasis on words
rather than special characters helps the reading and comprehension of code.

Now that we’ve outlined a few of Python’s benefits, we’ll show some comparisons of
code examples in Python, Perl, and Bash. Along the way, we’ll also look at a few more

of Python’s benefits. Here is a simple example, in Bash, of showing all the combinations
of 1,2 and a, b:

#1/bin/bash

for a in 1 2; do
for b in a b; do
echo "$a $b"
done
done

And here is a comparable piece of Perl:

#!/usr/bin/perl

foreach $a ('1', '2") {
foreach $b ('a', 'b') {
print "$a $b\n";
}

}

This is a pretty simple nested loop. Let’s compare these looping mechanisms with a
for loop in Python:
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