PythonTEUnixF LinuxZ G E PRI A (%)

Python

for Unix and Linux
System Administration

O’REILLY"
FF BA H R 4 Noah Gift & Jeremy M. Jones &

Python 7 Unix # Linux & 4t
EERRMA (FER)

Python for Unix and Linux System Administration

Noah Gift & Jeremy M. Jones

O'REILLY*®

Beijing + Cambridge « Farnham < Kéln « Sebastopol - Taipei « Tokyo
O'Reilly Media, Inc. 44 4 F R B K F AL A RA MR E) | FFoA s it R X A7
FF A tH ARt

EHERMSE (CIP) ¥dE

PythonfEUnix. Linux REFHPHINA: L / (£
BT (Jones, J.) ., () HKFF (Gift, N.) F. —&
EpAS. —Jba: JFE i hRAL, 2009. 3

ISBN 978-7-80205-738-8

[. U 1. B TIL QAT RE—NH—UNIXEER
G—REF R —R Q%M T E—MNHA—LinuxE/ERG—
EIFkit—23c V. TP316.8 TP311.56

[A B PIECIPE IR (2009) 560355135

LR FOBUR AR B TR 8D

E%: 10-2009-085 =

©2008 by O’ Reilly Media, Inc.

Reprint of the English Edition, jointly published by O’Reilly Media, Inc. and Kai Ming Press, 2009. Authorized
reprint of the original English edition, 2008 0’Reilly Media, Inc., the owner of all rights to publish and sell
the same.

All rights reserved including the rights of reproduction in whole or in part in any form.

F RO Reilly Media, Inc. HifR2008.

YOI ENR b TP AR HA R 2009 IR ENRRE HH RSORNA B 45 B0 SR S U B B —— O’ Reilly

Media, Inc. M7,

WRALET A, RAGIEVFR], A4S KRR35 R AFBAR UL AR EH

$4: Python 7E Unix #l Linux RZEEH P HMNHE GEEIR)

HRE: TR AR AR (BT TE X 8 =50 b 19 5 #R%i 100089)
S48 SEFEHE

ENRI: JbmmiB el SA RA R (Abn s b ok K i stk = A
FA: 787X1092 1/16

EN3k. 28.75

FH#. 483 TF

RER: 2009 4F 4 H JE5UR 1R

EMR: 2009 45 4 H dbxi%E 1 IKEDRI

Efr: 64.00 TG

EDRI. HiTREEE, HEHHSFARE BHRBIE: (010) 88817647

Foreword

I was excited to preview this book on using Python for system administration. I
remembered how I felt when I discovered Python after many years of programming in
other languages: it was like a breath of spring air and the warmth of the sun after a long
winter indoors. Code was suddenly easy and fun to write again, and I finished programs
much more quickly than before.

As a system administrator, most of my own Python use is for system and network
management tasks. [already knew how useful a good book focusing on system ad-
ministration with Python would be. I am happy to say that this is that book. Overall,
Noah and Jeremy have created an interesting, intelligent work on Python thatis planted
firmly in the system administration sphere. I found the book both very useful and en-
joyable to read.

The two opening chapters are a great introduction to Python for system administrators
(and others) who are new to Python. I consider myself an intermediate Python pro-
grammer, and I learned a lot from the book. I suspect even Python wizards will come
across a few new tricks in here. I can especially recommend the chapters on networking
and managing network services, SNMP, and management of heterogeneous systems as
particularly useful and well focused on nontrivial, real-world tasks that system admin-
istrators face every day.

—Zleen Frisch, July 2008

Xi

Preface

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.
Constant width
Used for program listings, in text to refer to program elements, such as variable or
function names, databases, data types, environment variables, statements, utilities,
keywords, utilities, and modules.
Constant width bold
Shows commands or other text that should be typed literally by the user.
Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

o o

o This icon signifies a tip, suggestion, or general note.
AN
\‘\‘ :‘
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code that
is included in this book in your programs and documentation. You do not need to
contact us for permission unless you're reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission; selling or distributing a CD-ROM of examples from O’Reilly

xiii

books does require permission. Answering a question by citing this book and quoting
example code does not require permission; incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN, for example: “Python for Unix and Linux System Admin-

istration by Noah Gift and Jeremy M. Jones. Copyright 2008 Noah Gift and Jeremy M.
Jones, 978-0-596-51582-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

.« When you see a Safari® Books Online icon on the cover of your favorite
Safari 4 Y

sawonne technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/9780596515829
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

xiv | Preface

Acknowledgments

Noah’s Acknowledgments

As [sit writing an acknowledgment for this book, I have to first mention Dr. Joseph E.
Bogen, because he made the single largest impact on me, at a time that it mattered the
most. Imet Dr. Bogen while I was working at Caltech, and he opened my eyes to another
world giving me advice on life, psychology, neuroscience, math, the scientific study of
consciousness, and much more. He was the smartest person I ever met, and was some-
one I loved. I am going to write a book about this experience someday, and I am sad-
dened that he won’t be there to read it, his death was a big loss.

[want to thank my wife, Leah, who has been one of the best things to happen to me,
ever. Without your love and support, I never could have written this book. You have
the patience of a saint. I am looking forward to going where this journey takes us, and
I love you. I also want to thank my son, Liam, who is one and a half, for being patient
with me while I wrote this book. I had to cut many of our guitar, piano, and pushup
lessons short, so I owe you payback times two, little goat.

To my mom, I love you, and thank you for encouraging me throughout life.

Of course, I want to thank Jeremy M. Jones, my coauthor, for agreeing to write this
book with me. I think we were a great team with different, but complementary styles,
and we wrote a great book. You have taught me a lot about Python, and have been a
good partner and friend. Thanks!

Titus Brown, whom I suppose I have to call Dr. Brown now, was the person that got
me interested in Python to begin with, when I met him at Caltech. He is another ex-
ample of how one person can make a difference, and I am glad to consider him an “old”
friend, the kind money can’t buy. He kept asking me, “Why don’t you use Python?”
And then one day I did. If it wasn’t for Titus, I would certainly have continued down
the Java and Perl path. You can read his blog here: http://ivory.idyll.org/blog.

Shannon Behrens has a heart of solid gold, a mind as sharp as a razor, and a knowledge
of Python that is truly scary. I first met Shannon through Titus, ironic again, but he and
I became quick friends. Shannon is the real deal in every sense of the word, and has
taught me a tremendous amount about Python, in fact, staggering would be a better
word. His help with Python, and editing this book has been incredible, and I owe him
tremendously. I shudder to think of what it would have looked like without him. I can’t
ever imagine a company being foolish enough to let him get away, and I look forward
to helping him with his first book. Finally, he is just an incredible technical reviewer.
You can read his blog here: http://jjinux.blogspot.com/.

Doug Hellmann was our other star technical reviewer and was exceptionally productive
and helpful. Jeremy and I are extremely fortunate to get someone of his caliber to review
the book. He went above and beyond his call of duty, and is truly a force of efficiency

Preface | xv

to reckon with. He was also a great source of motivation while we worked together at
Racemi. You can read his blog here: http://blog.doughellmann.com/.

Thanks to Scott Leerseen for reviewing our book and giving us good advice along the
way. [also especially enjoyed our code review battles. Just remember, I am always right.

Thanks to Alfredo Deza for the work on making an Ubuntu virtual machine for the
book, your expertise was greatly appreciated.

A very large thanks to Liza Daly, for providing good feedback on some really early, and
rough, parts of our book. This was tremendously helpful.

Special thanks to Jeff Rush for his advice and reference material on Buildout, Eggs, and
Virtualenv.

Thanks to Aaron Hillegass who has given me some great advice and help along the way,
and who has a great training company, Big Nerd Ranch. He is a special person, who I
am lucky to have met. Thanks to Mark Lutz, who I had the pleasure of taking a Python
training course from, and who has written some great books on Python.

Thanks to the people in the Python community in Atlanta, and the members of PyAtl:
http://pyatl.org; you have all taught me a great deal. Rick Copeland, Rick Thomas,
Brandon Rhodes, Derek Richardson, Jonathan La Cour, a.k.a Mr. Metaclass, Drew
Smathers, Cary Hull, Bernard Matthews, Michael Langford, and many more I have
forgotten to mention. Brandon and Rick Copeland in particular have been very helpful
and are awesome Python programmers. You can read Brandon’s blog at http://rhodes
mill.org/brandon/.

Thanks to Grig Gheorghiu for giving us expert sysadmin and testing advice and for
giving us a kick in the butt when we needed one.

Thanks to my former employer Racemi, and the CTO/Founder, Charles Watt. [learned
a lot from you and was glad you knew which competitive buttons to push. Just re-
member [will kick your butt at writing code, a 26-mile run, or a 200-mile bike ride any
day, just tell me where and when.

Thanks to Dr. Nanda Ganesan, who was a great mentor in graduate school at CSULA.
You taught me a lot about information technology and life and encouraged me to think
big.

Thanks to Dr. Cindy Heiss, who was my professor for my undergraduate degree in

nutritional science. You got me started on web development, encouraged me to believe
in myself, and ultimately made an impact on my life, thanks!

Thanks to Sheldon Blockburger, who let me try out for Division I decathlon as a walk-
on at Cal Poly SLO. Even though I didn’t make the team, you showed me how to be a
fierce competitor and warrior, and taught me the self-discipline to run 200-meter in-
tervals by myself. I believe weekly 200-meter interval workouts make me a better soft-
ware engineer.

xvi | Preface

There were many other people who helped tremendously along the way, including
Jennifer Davis, yet another friend from Caltech, who gave us some great feedback; some
of my friends and coworkers at Turner; Doug Wake, Wayne Blanchard, Sam Allgood,
Don Voravong; some of my friends and coworkers from Disney Feature animation,
including Sean Someroff, Greg Neagle, and Bobby Lea. Greg Neagle in particular taught
me a lot about OS X. Also, thanks to J.F. Panisset, who I met at Sony Imageworks, for
teaching me quite a bit about engineering in general. Although he is now a CTO, he is
another rare catch for any company.

I would like to thank a few others who made some important contributions: Mike
Wagner, Chris McDowell, and Shaun Smoot.

Thanks to Bruce J. Bell, who I worked with at Caltech. He taught me quite a bit about
Unix and programming over the years, and I owe him greatly for it. You can read his
material here: http://www.ugcs.caltech.edu/~bruce/.

Also thanks to Alberto Valez, my boss at Sony Imageworks, for being possibly the best
boss I ever had and giving me the chance to completely automate my job. Thanks to
film editor Ed Fuller, who helped with advice on the book, and was a good friend during
this process.

Thanks to many people in the Python community. First, thanks to Guido van Rossum
for writing a great language, for being a great leader, and for being patient with me
when I asked for advice on the book. There are so many rock stars in the Python com-
munity who crank out useful tools that I use everyday. They include Ian Bicking, Fer-
nando Perez and Villi Vainio, Mike Bayer, Gustavo Niemeyer, etc. Thanks! Thanks to
the great book by David Beazely, and his fantastic tutorial at PyCon 2008 on Genera-
tors. Thanks to other writers about Python and systems administration as well. You
can find links to their work here: http://wiki.python.org/moin/systems_administration.
Thanks also to the Repoze crew: Tres Seaver and Chris McDonough (http://repoze.org/
index.html).

Special thanks to the great tools, advice, and tolerance from Phillip J. Eby on the
setuptools section. Also, thanks to Jim Fulton who tolerated my questions about ZODB
and buildout, with a crazy schedule. Additional thanks to Martijn Fassen, who taught
me about ZODB and Grok. If you want to see the future of Python web development,
check out Grok: http://grok.zope.org/.

Thanks to Red Hat Magazine staff, Julie Bryce, Jessica Gerber, Bascha Harris, and Ruth
Suehle, for letting me try out ideas we used in this book in the form of articles. Also,
thanks to Mike McCrary at IBM Developerworks, for letting me write articles to try out
ideas we used in this book.

I want to thank the multitudes of people who told me at one point in my life that I
couldn’t do something. At almost every step, I have met discouraging people who told
me everything from I would never get into the college I wanted to to I would never learn
to program. Thank you for giving me the extra motivation to succeed at my dreams.

Preface | xvii

Humans can create their own reality if they truly believe in themselves, and I would
encourage everyone to give themselves a chance to do what they truly want to do.

Finally, thanks to O’Reilly and Tatiana Apandi, for believing in my original pitch for a
book on Python and Systems Administration. You took a chance and believed in me
and Jeremy, and I thank you for that. Although Tatiana left O’Reilly near the end of
our book to pursue her dreams, her impact was still felt. I also want to thank our new
editor Julie Steele, who has been supportive and helpful every step of the way. You have
really provided a sea of calm that I personally appreciated greatly. I look forward to
hearing great things in the future from Julie, and I'm excited to work with her again.

Jeremy’s Acknowledgments

After reading Noah'’s list of thanks, it makes me feel both ungrateful, because I know
my list won’t be that long, and at a loss, because I think he covered nearly everyone
that I wanted to thank.

First, I must thank my God, through Whom I can do all things and without Whom, I
can do nothing.

First in an earthly sense, I thank my wife, Debra. You kept the children engaged with
other activities while I worked on the book. You enforced the so-often reapeated rule
“Don’t bother Daddy while he’s working on his book.” You encouraged me when I
needed it, and you also gave me a lot of space, which is what I needed most. Thank
you. I love you. I could not have written this book without you.

I also must thank my sweet children, Zane and Justus, for their patience through the
process of my writing this book. I missed out on a lot of trips to Stone Mountain with
you both. I'still put one of you to bed most nights, but I missed out on staying in there
long enough to fall asleep with you, like I used to. I missed out on the last several weeks
of Kid’s Rock on Wednesday nights. I missed out on so much, but you bore it patiently.
So, thank you for your patience. And thank you for your excitement as you hear that
I'm almost done with the book. I love you both.

I want to thank my parents, Charles and Lynda Jones, for their support through the
course of my writing this book. But more than that, I want to thank them for being a
living example of a strong work ethic, of earning everything you have, of working hard
to better yourself, and of spending money wisely. Those are lessons [hope to pass on
to Zane and Justus.

Thank you to Noah Gift, my coauthor, for getting me into this mess. It has been hard,
harder than I thought and definitely one of the hardest things I've ever done in my life.
I think it says a lot about a person when you work on something like this with him and
at the end, you can still think of him as your friend. Thanks, Noah. This book would
not have begun if not for you.

xviii | Preface

[want to thank our team of reviewers. I think that Noah has already thanked all of you,
but I want to thank everyone that I can: Doug Hellman, Jennifer Davis, Shannon J]J
Behrens, Chris McDowell, Titus Brown, and Scott Leerseen. You guys were awesome.
There were times when I thought that I had something spot-on and you readjusted my
thinking. Or you just brought a completely different perspective to the book and helped
me see my work through a different set of eyes. (That was mostly you, Jennifer. If the

text processing chapter is useful for sysadmins, it’s mostly because of you.) Thank you
all.

[also want to thank our editors, Tatiana Apandi and Julie Steele. You guys handled
the hard stuff, freeing us up to work on the book. You both eased our burden along
the way. Thank you.

I'd also like to thank Fernando Perez and Ville Vainio for your amazing feedback. I
hope I've done IPython justice. And thank you for IPython. I feel like I couldn’t live
without it.

Thank you Duncan McGreggor, for helping me get the Twisted code in better shape.
Your comments were extemely helpful. And thank you for working on Twisted. It is
an amazing framework. [hope to use it more, real soon now.

I thank Bram Moolenaar and everyone who has ever worked on the Vim editor. Almost
every word and XML tag that [wrote flowed through capabilities Vim. I picked up a
few tricks along the way that I'll incorporate into my daily editing habits. Vim made
me more productive. Thank you.

[also want to thank Linus Torvalds, the Debian folks, the Ubuntu folks, and anyone
else who has ever worked on Linux. Almost every word that I typed was done on Linux.
You made it incredibly simple to set up new environments and test different things.
Thank you.

Finally, but by no means least, I want to thank Guido van Rossum and everyone who
has ever done any work on Python. T have been benefitting from your work for a number
of years now. I was hired for my last two jobs because of Python. Python, the language,
and Python, the community, have been both a great joy for me since I started working
with it sometime around 2001-2002. Thank you. Python has been very good to me.

Preface | xix

Table of Contents

FOTOWOTH ... ccoomaiinsaaamsna s somws s o oo o die wis s 08 oin wis0 w16 9108 50 sma min o s 0w wia's 00 Xi
] - T P PP R i
1. INtrodUCtion «.uvvuevirrnessosionsesanneansacsossasssssssrscscesesnsacses 1
Why Python? 1
Motivation 6
The Basics 8
Executing Statements in Python 8
Using Functions in Python 12
Reusing Code with the Import Statement 16
2. IPYhON ..oeniiiiiiiiii i e e ettt 21
Installing [Python 22
Basic Concepts 23
Help with Magic Functions 30
Unix Shell 34
Information Gathering 51
Automation and Shortcuts 64
Summary 69
. I . RS POPTS TR CREPPES e n
Python Built-ins and Modules 71
Log Parsing 110
ElementTree 116
Summary 120
4., Documentationand Reportingccoviuiuiiininiiiiiiiiiiiiiinenes 123
Automated Information Gathering 123
Manual Information Gathering 126
Information Formatting 135

vii

Information Distribution 141

Summary 145
5. NetWOrKingoooeiiiiii i i i e e 147
Network Clients 147
Remote Procedure Call Facilities 158
SSH 164
Twisted 167
Scapy 173
Creating Scripts with Scapy 175
B DA & oo i wm o s s wie om0 00, Wi 0 i 0 S 8 9 8 S 177
Introduction 177
Using the OS Module to Interact with Data 178
Copying, Moving, Renaming, and Deleting Data 179
Working with Paths, Directories, and Files 181
Comparing Data 185
Merging Data 187
Pattern Matching Files and Directories 193
Wrapping Up rsync 195
Metadata: Data About Data 197
Archiving, Compressing, Imaging, and Restoring 199
Using tarfile Module to Create TAR Archives 199
Using a tarfile Module to Examine the Contents of TAR Files 201
7o SNMP i i e e e e e 205
Introduction 205
Brief Introduction to SNMP 205
[Python and Net-SNMP 208
Discovering a Data Center 211
Retrieving Multiple-Values with Net-SNMP 214
Creating Hybrid SNMP Tools 220
Extending Net-SNMP 222
SNMP Device Control 224
Enterprise SNMP Integration with Zenoss 225
N 1311 227
Introduction 227
Cross-Platform Unix Programming in Python 228
PyInotify 238
OSX 240
Red Hat Linux Systems Administration 245
Ubuntu Administration 245

viii | Table of Contents

10.

1.

12.

Solaris Systems Administration
Virtualization
Cloud Computing

Using Zenoss to Manage Windows Servers from Linux

Package Managementccoeviiiiinninn..

Introduction

Setuptools and Python Eggs
Using easy_install

easy_install Advanced Features
Creating Eggs

Entry Points and Console Scripts

Registering a Package with the Python Package Index

Distutils

Buildout

Using Buildout
Developing with Buildout
virtualenv

EPM Package Manager

Processesand Concurrencycovvevnenianenianss

Introduction

Subprocess

Using Supervisor to Manage Processes
Using Screen to Manage Processes
Threads in Python

Processes

Processing Module

Scheduling Python Processes
daemonizer

Summary

BuildingGUIScoovviviiiiiiiiiiiiiiiiinnnnn,

GUI Building Theory

Building a Simple PyGTK App

Building an Apache Log Viewer Using PyGTK
Building an Apache Log Viewer Using Curses
Web Applications

Django

Conclusion

DataPersistenceccvieiiiiiiiiiiiiiiiiiiian

Simple Serialization

245
246
247
253

................... 257

257
258
258
261
266
270
271
273
275
276
279
279
283

................... 289

289
289
298
300
301
313
313
316
318
321

................... 323

323
324
326
330
334
335
354

................... 357

357

Table of Contents | ix

Relational Serialization 376

Summary 385

13. CommandLineooviiniiiiiiiii e 387
Introduction 387
Basic Standard Input Usage 388
Introduction to Optparse 389
Simple Optparse Usage Patterns 390

Unix Mashups: Integrating Shell Commands into Python Command-Line Tools

397

Integrating Configuration Files 402
Summary 404

14. Pragmatic EXAMPIES . oo v, v e suinion vieos v ess omens sin s v s s wio s 5 sin s 405
Managing DNS with Python 405
Using LDAP with OpenLLDAP, Active Directory, and More with Python 406
Apache Log Reporting 408

FTP Mirror 415
Appendix: CallDackscuiriiieii i i i e 419
IIHHOX s o v orm w4 0 s i i 556 5. 6 WEN B8 5658 550t 0 806 & 36 i & 0 el 0 0.0 00 423

x | Tableof Contents

CHAPTER 1
Introduction

Why Python?

If you are a system administrator, it is likely that you have encountered Perl, Bash, ksh,
or some other scripting language. You may have even used one or more yourself.
Scripting languages are often used to do repetitive, tedious work at a rate and with an
accuracy that far surpass what you could accomplish without them. All languages are
tools. They are simply a means to get work done. They have value only insofar as they
help you get your job done better. We believe that Python is a valuable tool, specifically
because it enables you to get your work done efficiently.

So is Python better than Perl, Bash, Ruby, or any other language? It’s really difficult to
put that sort of qualitative label on a programming language, since the tool is so closely
tied to the thought process of the programmer who is using it. Programming is a sub-
jective, deeply personal activity. For the language to be excellent, it must fit the person
usingit. So we’re not going to argue that Python is better, but we will explain the reasons
that we believe Python can be an excellent choice. We’ll also explain why it is a great
fit for performing sysadmin tasks.

The first reason that we think that Python is excellent is that it is easy to learn. If a
language can’t help you become productive pretty quickly, the lure of that language is
severely diminished. Why would you want to spend weeks or months studying a lan-
guage before you are able to write a program that does something useful? This is espe-
cially the case for sysadmins. If you are a sysadmin, your work can pile up faster than
you can unpile it. With Python, you can start writing useful scripts literally in hours
rather than in days or weeks. If you can’t learn a language quickly enough to start
writing scripts with it almost immediately, you should strongly question whether you
should be learning it.

However, a language that is easy to learn but doesn’t allow you to do fairly complex
tasks isn’t worth much either. So the second reason that we consider Python to be an
excellent programming language is that, while it lets you start simply, it also allows you
to perform tasks that are as complex as you can imagine. Do you need to read through
a logfile line by line and pull out some pretty basic information? Python can handle

that. Or do you need to parse through a logfile, extract every piece of information that
it provides, compare usage from each IP address in this logfile to usage in each logfile
(which are stored in a relational database, by the way) from the past three months, and
then store the results to a relational database? Sure, Python can do that as well. Python
is being used on some pretty complex problems, such as analysis of genomic sequences,
multithreaded web servers, and heavy duty statistical analysis. You may never have to
work on anything like that, but it’s nice to know that when you need to do complex
things, the language is able to work with you.

Additionally, if you are able to perform complex operations, but the maintainability of
your code suffers along the way, that isn’t a good thing. Python doesn’t prevent code
maintenance problems, but it does allow you to express complex ideas with simple
language constructs. Simplicity is a huge factor in writing code that is easy to maintain
later. Python has made it pretty simple for us to go back over our own code and work
on it after we haven’t touched it in months. It has also been pretty simple for us to work
on code that we haven’t seen before. So the language, that is the language’s syntax and
common idioms, are clear and concise and easy to work with over long periods of time.

The next reason we consider Python to be an excellent language is its readability.
Python relies on whitespace to determine where code blocks begin and end. The in-
dentation helps your eyes quickly follow the flow of a program. Python also tends to
be “word-based.” By that we mean that while Python uses its share of special characters,
features are often implemented as keywords or with libraries. The emphasis on words
rather than special characters helps the reading and comprehension of code.

Now that we’ve outlined a few of Python’s benefits, we’ll show some comparisons of
code examples in Python, Perl, and Bash. Along the way, we’ll also look at a few more

of Python’s benefits. Here is a simple example, in Bash, of showing all the combinations
of 1,2 and a, b:

#1/bin/bash

for a in 1 2; do
for b in a b; do
echo "$a $b"
done
done

And here is a comparable piece of Perl:

#!/usr/bin/perl

foreach $a ('1', '2") {
foreach $b ('a', 'b') {
print "$a $b\n";
}

}

This is a pretty simple nested loop. Let’s compare these looping mechanisms with a
for loop in Python:

2 | Chapter1: Introduction

