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Overview

In formulating a stochastic model to describe a real phenomenon, it used to be that
one compromised between choosing a model that is a realistic replica of the actual
situation and choosing one whose mathematical analysis is tractable. That is, there
did not seem to be any payoff in choosing a model that faithfully conformed to
the phenomenon under study if it were not possible to mathematically analyze
that model. Similar considerations have led to the concentration on asymptotic or
steady-state results as opposed to the more useful ones on transient time. However,
the advent of fast and inexpensive computational power has opened up another
approach—namely, to try to model the phenomenon as faithfully as possible and
then to rely on a simulation study to analyze it.

In this text we show how to analyze a model by use of a simulation study. In
particular, we first show how a computer can be utilized to generate random (more
precisely, pseudorandom) numbers, and then how these random numbers can be
used to generate the values of random variables from arbitrary distributions. Using
the concept of discrete events we show how to use random variables to generate the
behavior of a stochastic model over time. By continually generating the behavior of
the system we show how to obtain estimators of desired quantities of interest. The
statistical questions of when to stop a simulation and what confidence to place in
the resulting estimators are considered. A variety of ways in which one can improve
on the usual simulation estimators are presented. In addition, we show how to use
simulation to determine whether the stochastic model chosen is consistent with a
set of actual data.
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New to This Edition

e New exercises in most chapters.

e A new Chapter 6, dealing both with the multivariate normal distribution, and
with copulas, which are useful for modeling the joint distribution of random
variables.

e Chapter 9, dealing with variance reduction, includes additional material on
stratification. For instance, it is shown that stratifying on a variable always
results in an estimator having smaller variance than would be obtaind by
using that variable as a control. There is also a new subsection on the use of
post stratification.

e There is a new chapter dealing with additional variance reduction methods
beyond those previously covered. Chapter 10 introduces the conditional
Bernoulli sampling method, normalized importance sampling, and Latin
Hypercube sampling.

e The chapter on Markov chain Monte Carlo methods has an new section
entitled Continuous time Markov chains and a Queueing Loss Model.

Chapter Descriptions

The successive chapters in this text are as follows. Chapter 1 is an introductory
chapter which presents a typical phenomenon that is of interest to study. Chapter 2
is a review of probability. Whereas this chapter is self-contained and does not
assume the reader is familiar with probability, we imagine that it will indeed be a
review for most readers. Chapter 3 deals with random numbers and how a variant
of them (the so-called pseudorandom numbers) can be generated on a computer.
The use of random numbers to generate discrete and then continuous random
variables is considered in Chapters 4 and 5.

Chapter 6 studies the multivariate normal distribution, and introduces copulas
which are useful for modeling the joint distribution of random variables. Chapter 7
presents the discrete event approach to track an arbitrary system as it evolves
over time. A variety of examples—relating to both single and multiple server
queueing systems, to an insurance risk model, to an inventory system, to a machine
repair model, and to the exercising of a stock option—are presented. Chapter 8
introduces the subject matter of statistics. Assuming that our average reader has not
previously studied this subject, the chapter starts with very basic concepts and ends
by introducing the bootstrap statistical method, which is quite useful in analyzing
the results of a simulation.

Chapter 9 deals with the important subject of variance reduction. This is an
attempt to improve on the usual simulation estimators by finding ones having
the same mean and smaller variances. The chapter begins by introducing the
technique of using antithetic variables. We note (with a proof deferred to the
chapter’s appendix) that this always results in a variance reduction along with
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a computational savings when we are trying to estimate the expected value of
a function that is monotone in each of its variables. We then introduce control
variables and illustrate their usefulness in variance reduction. For instance, we show
how control variables can be effectively utilized in analyzing queueing systems,
reliability systems, a list reordering problem, and blackjack. We also indicate how
to use regression packages to facilitate the resulting computations when using
control variables. Variance reduction by use of conditional expectations is then
considered, and its use is indicated in examples dealing with estimating 7, and
in analyzing finite capacity queueing systems. Also, in conjunction with a control
variate, conditional expectation is used to estimate the expected number of events
of arenewal process by some fixed time. The use of stratified sampling as a variance
reduction tool is indicated in examples dealing with queues with varying arrival
rates and evaluating integrals. The relationship between the variance reduction
techniques of conditional expectation and stratified sampling is explained and
illustrated in the estimation of the expected return in video poker. Applications of
stratified sampling to queueing systems having Poisson arrivals, to computation of
multidimensional integrals, and to compound random vectors are also given. The
technique of importance sampling is next considered. We indicate and explain how
this can be an extremely powerful variance reduction technique when estimating
small probabilities. In doing so, we introduce the concept of tilted distributions
and show how they can be utilized in an importance sampling estimation of
a small convolution tail probability. Applications of importance sampling to
queueing, random walks, and random permutations, and to computing conditional
expectations when one is conditioning on a rare event are presented. The final
variance reduction technique of Chapter 9 relates to the use of a common stream of
random numbers. Chapter 10 introduces additional variance reduction techniques.

Chapter 11 is concerned with statistical validation techniques, which are
statistical procedures that can be used to validate the stochastic model when some
real data are available. Goodness of fit tests such as the chi-square test and the
Kolmogorov—Smirnov test are presented. Other sections in this chapter deal with
the two-sample and the n-sample problems and with ways of statistically testing
the hypothesis that a given process is a Poisson process.

Chapter 12 is concerned with Markov chain Monte Carlo methods. These are
techniques that have greatly expanded the use of simulation in recent years. The
standard simulation paradigm for estimating 6 = E[h(X)], where X is a random
vector, is to simulate independent and identically distributed copies of X and
then use the average value of /(X) as the estimator. This is the so-called “raw”
simulation estimator, which can then possibly be improved upon by using one or
more of the variance reduction ideas of Chapters 9 and 10. However, in order to
employ this approach it is necessary both that the distribution of X be specified and
also that we be able to simulate from this distribution. Yet, as we see in Chapter 12,
there are many examples where the distribution of X is known but we are not able to
directly simulate the random vector X, and other examples where the distribution
is not completely known but is only specified up to a multiplicative constant. Thus,
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in either case, the usual approach to estimating 6 is not available. However, a new
approach, based on generating a Markov chain whose limiting distribution is the
distribution of X, and estimating 6 by the average of the values of the function &
evaluated at the successive states of this chain, has become widely used in recent
years. These Markov chain Monte Carlo methods are explored in Chapter 12.
We start, in Section 12.2, by introducing and presenting some of the properties
of Markov chains. A general technique for generating a Markov chain having a
limiting distribution that is specified up to a multiplicative constant, known as the
Hastings—Metropolis algorithm, is presented in Section 12.3, and an application
to generating a random element of a large “‘combinatorial” set is given. The most
widely used version of the Hastings—Metropolis algorithm is known as the Gibbs
sampler, and this is presented in Section 12.4. Examples are discussed relating to
such problems as generating random points in a region subject to a constraint that
no pair of points are within a fixed distance of each other, to analyzing product
form queueing networks, to analyzing a hierarchical Bayesian statistical model for
predicting the numbers of home runs that will be hit by certain baseball players,
and to simulating a multinomial vector conditional on the event that all outcomes
occur at least once. An application of the methods of this chapter to deterministic
optimization problems, called simulated annealing, is presented in Section 12.5,
and an example concerning the traveling salesman problem is presented. The final
section of Chapter 12 deals with the sampling importance resampling algorithm,
which is a generalization of the acceptance-rejection technique of Chapters 4 and 5.
The use of this algorithm in Bayesian statistics is indicated.
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Introduction

Consider the following situation faced by a pharmacist who is thinking of setting
up a small pharmacy where he will fill prescriptions. He plans on opening
up at 9 A.M. every weekday and expects that, on average, there will be about
32 prescriptions called in daily before 5 P.M. experience that the time that it will
take him to fill a prescription, once he begins working on it, is a random quantity
having a mean and standard deviation of 10 and 4 minutes, respectively. He plans
on accepting no new prescriptions after 5 P.M., although he will remain in the shop
past this time if necessary to fill all the prescriptions ordered that day. Given this
scenario the pharmacist is probably, among other things, interested in the answers
to the following questions:

L.
2
3.

What is the average time that he will depart his store at night?

What proportion of days will he still be working at 5:30 P.M.?

What is the average time it will take him to fill a prescription (taking into
account that he cannot begin working on a newly arrived prescription until
all earlier arriving ones have been filled)?

. What proportion of prescriptions will be filled within 30 minutes?
. If he changes his policy on accepting all prescriptions between 9 A.M.

and 5 P.M., but rather only accepts new ones when there are fewer than
five prescriptions still needing to be filled, how many prescriptions, on
average, will be lost?

. How would the conditions of limiting orders affect the answers to questions

1 through 4?

In order to employ mathematics to analyze this situation and answer the
questions, we first construct a probability model. To do this it is necessary to

Simulation. DOL http://dx.doi.org/10.1016/B978-0-12-415825-2.00001-2
© 2013 Elsevier Inc. All rights reserved. 1



2 1 Introduction

make some reasonably accurate assumptions concerning the preceding scenario.
For instance, we must make some assumptions about the probabilistic mechanism
that describes the arrivals of the daily average of 32 customers. One possible
assumption might be that the arrival rate is, in a probabilistic sense, constant over
the day, whereas a second (probably more realistic) possible assumption is that
the arrival rate depends on the time of day. We must then specify a probability
distribution (having mean 10 and standard deviation 4) for the time it takes to
service a prescription, and we must make assumptions about whether or not the
service time of a given prescription always has this distribution or whether it
changes as a function of other variables (e.g., the number of waiting prescriptions
to be filled or the time of day). That is, we must make probabilistic assumptions
about the daily arrival and service times. We must also decide if the probability law
describing a given day changes as a function of the day of the week or whether it
remains basically constant over time. After these assumptions, and possibly others,
have been specified, a probability model of our scenario will have been constructed.

Once a probability model has been constructed, the answers to the questions
can, in theory, be analytically determined. However, in practice, these questions
are much too difficult to determine analytically, and so to answer them we usually
have to perform a simulation study. Such a study programs the probabilistic
mechanism on a computer, and by utilizing “random numbers” it simulates possible
occurrences from this model over a large number of days and then utilizes the theory
of statistics to estimate the answers to questions such as those given. In other words,
the computer program utilizes random numbers to generate the values of random
variables having the assumed probability distributions, which represent the arrival
times and the service times of prescriptions. Using these values, it determines over
many days the quantities of interest related to the questions. It then uses statistical
techniques to provide estimated answers—for example, if out of 1000 simulated
days there are 122 in which the pharmacist is still working at 5:30, we would
estimate that the answer to question 2 is 0.122.

In order to be able to execute such an analysis, one must have some knowledge of
probability so as to decide on certain probability distributions and questions such
as whether appropriate random variables are to be assumed independent or not.
A review of probability is provided in Chapter 2. The bases of a simulation study
are so-called random numbers. A discussion of these quantities and how they are
computer generated is presented in Chapter 3. Chapters 4 and 5 show how one can
use random numbers to generate the values of random variables having arbitrary
distributions. Discrete distributions are considered in Chapter 4 and continuous
ones in Chapter 5. Chapter 6 introduces the multivariate normal distribution, and
shows how to generate random variables having this joint distribution. Copulas,
useful for modeling the joint distributions of random variables, are also introduced
in Chapter 6. After completing Chapter 6, the reader should have some insight
into the construction of a probability model for a given system and also how
to use random numbers to generate the values of random quantities related to
this model. The use of these generated values to track the system as it evolves
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continuously over time—that is, the actual simulation of the system—is discussed
in Chapter 7, where we present the concept of “discrete events” and indicate how
to utilize these entities to obtain a systematic approach to simulating systems.
The discrete event simulation approach leads to a computer program, which can
be written in whatever language the reader is comfortable in, that simulates the
system a large number of times. Some hints concerning the verification of this
program—to ascertain that it is actually doing what is desired—are also given in
Chapter 7. The use of the outputs of a simulation study to answer probabilistic
questions concerning the model necessitates the use of the theory of statistics, and
this subject is introduced in Chapter 8. This chapter starts with the simplest and
most basic concepts in statistics and continues toward “bootstrap statistics,” which
is quite useful in simulation. Our study of statistics indicates the importance of the
variance of the estimators obtained from a simulation study as an indication of the
efficiency of the simulation. In particular, the smaller this variance is, the smaller is
the amount of simulation needed to obtain a fixed precision. As a result we are led,
in Chapters 9 and 10, to ways of obtaining new estimators that are improvements
over the raw simulation estimators because they have reduced variances. This
topic of variance reduction is extremely important in a simulation study because
it can substantially improve its efficiency. Chapter 11 shows how one can use
the results of a simulation to verify, when some real-life data are available, the
appropriateness of the probability model (which we have simulated) to the real-
world situation. Chapter 12 introduces the important topic of Markov chain Monte
Carlo methods. The use of these methods has, in recent years, greatly expanded
the class of problems that can be attacked by simulation.

Exercises

1. The following data yield the arrival times and service times that each customer
will require, for the first 13 customers at a single server system. Upon arrival,
a customer either enters service if the server is free or joins the waiting line.
When the server completes work on a customer, the next one in line (i.e., the
one who has been waiting the longest) enters service.

Arrival Times: 12 31 63 95 99 154 198 221 304 346 411 455 537
Service Times: 40 32 55 48 18 50 47 18 28 54 40 72 12

(a) Determine the departure times of these 13 customers.

(b) Repeat (a) when there are two servers and a customer can be served by either
one.

(c) Repeat (a) under the new assumption that when the server completes a
service, the next customer to enter service is the one who has been waiting
the least time.
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2. Consider a service station where customers arrive and are served in their order
of arrival. Let A,, S,, and D, denote, respectively, the arrival time, the service
time, and the departure time of customer n. Suppose there is a single server and
that the system is initially empty of customers.

(a) With Dy = 0, argue that forn > 0
D, — S, = Maximum{A,, D,_;}

(b) Determine the corresponding recursion formula when there are two servers.

(c) Determine the corresponding recursion formula when there are k servers.

(d) Write a computer program to determine the departure times as a function of
the arrival and service times and use it to check your answers in parts (a)
and (b) of Exercise 1.
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2.1 Sample Space and Events

Consider an experiment whose outcome is not known in advance. Let S, called
the sample space of the experiment, denote the set of all possible outcomes. For
example, if the experiment consists of the running of a race among the seven horses
numbered 1 through 7, then

S = {all orderings of (1,2, 3,4,5,6,7)}

The outcome (3,4, 1,7, 6, 5, 2) means, for example, that the number 3 horse came
in first, the number 4 horse came in second, and so on.
Any subset A of the sample space is known as an event. That is, an event is
a set consisting of possible outcomes of the experiment. If the outcome of the
experiment is contained in A, we say that A has occurred. For example, in the
above, if
A = {all outcomes in § starting with 5}

then A is the event that the number 5 horse comes in first.

For any two events A and B we define the new event A U B, called the union of
A and B, to consist of all outcomes that are either in A or B or in both A and B.
Similarly, we define the event A B, called the intersection of A and B, to consist of
all outcomes that are in both A and B. That is, the event A U B occurs if either A or
B occurs, whereas the event A B occurs if both A and B occur. We can also define
unions and intersections of more than two events. In particular, the union of the
events Ay, ..., A,—designated by U"_, A;—is defined to consist of all outcomes
that are in any of the A;. Similarly, the intersection of the events A;, ..., A,—
designated by A, A, - - - A,—is defined to consist of all outcomes that are in all of
the A,‘.

Simulation. DOI: http://dx.doi.org/10.1016/B978-0-12-415825-2.00002-4
© 2013 Elsevier Inc. All rights reserved. 5



6 2 Elements of Probability

For any event A we define the event A, referred to as the complement of A, to
consist of all outcomes in the sample space S that are not in A. That is, A occurs if
and only if A does not. Since the outcome of the experiment must lie in the sample
space S, it follows that S¢ does not contain any outcomes and thus cannot occur.
We call S¢ the null set and designate it by ¢. If AB = ¢ so that A and B cannot
both occur (since there are no outcomes that are in both A and B), we say that A
and B are mutually exclusive.

2.2 Axioms of Probability

Suppose that for each event A of an experiment having sample space S there is a
number, denoted by P(A) and called the probability of the event A, which is in
accord with the following three axioms:

Axiom1 0<PA)LI
Axiom 2 P(S)=1

Axiom 3  For any sequence of mutually exclusive events Ay, A,, ...

P(L"JA,) :iP(A,»), n=12...,00.
i=1 i=1

Thus, Axiom 1 states that the probability that the outcome of the experiment lies
within A is some number between 0 and 1; Axiom 2 states that with probability
1 this outcome is a member of the sample space; and Axiom 3 states that for any
set of mutually exclusive events, the probability that at least one of these events
occurs is equal to the sum of their respective probabilities.

These three axioms can be used to prove a variety of results about probabilities.
For instance, since A and A¢ are always mutually exclusive, and since AUA® = §,
we have from Axioms 2 and 3 that

1=P(S)=P(AUA°) = P(A) + P(A°)

or equivalently
P(A°)=1—-P(A)

In words, the probability that an event does not occur is 1 minus the probability
that it does.



