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Introduction

What is “Analysis on Fractals”? Why is it interesting?

To answer those questions, we need to go back to the history of fractals.

Many examples of fractals, like the Sierpinski gasket, the Koch curve and
the Cantor set, were already known to mathermaticians early in the twenti-
eth century. Those sets were originally pathological (or exceptional) coun-
terexamples. For instance, the Koch curve (see Figure 0.1) is an example of
a compact curve with infinite length and the Cantor set is an example of an
uncountable perfect set with zero Lebesgue measure. Consequently, they
were thought of as purely mathematical objects. In fact, they attracted
much interest, in harmonic analysis in connection with Fourier transform,
and in geometric measure theory. There were extensive works started in the
early twentieth century by Wiener, Winter, Erdos, Hausdorff, Besicovich
and so on. See [181], [32] and [124]. These sets, however, had never been
associated with any objects in nature.

This situation had not changed until Mandelbrot proposed the notion of
fractals in the 1970s. In [122, 123] he claimed that many objects in nature
are not collections of smooth components. As evidence, using the exper-
iments by Richardson, he showed that some coast lines were not smooth
curves but curves which have infinite length like the Koch curve. Choosing

Fig. 0.1. Koch curve
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words more carefully and accurately, we need to say that some coast lines
should be modeled by curves with infinite length rather than (compositions
of) smooth curves.

Mandelbrot coined this revolutionary idea and introduced the notion of
fractals as a new class of mathematical objects which represent nature. The
importance of his proposal was soon recognized in many areas of science,
for example, physics, chemistry and biology. In mathematics, a new area
called fractal geometry developed quickly on the foundation of geometric
measure theory, harmonic analysis, dynamical systems and ergodic theory.
Fractal geometry treats the properties of (fractal) sets and measures on
them, like the Hausdorff dimension and the Hausdorff measure. From the
viewpoint of applications, it concerns the static aspects of the objects in
nature.

How about the dynamical aspects? There occur (physical) phenomena
on those objects modeled by fractals. How can we describe them? More
precisely, how does heat diffuse on fractals and how does a material with a
fractal structure vibrate? To give an answer to these questions, we need a
theory of “analysis on fractals”. For example, on a domain in R", diffusion
of heat is described by the heat (or diffusion) equation,

ou
at = Au,

where v = u(t,z), t is time, z is position and A is the Laplacian de-
2
fined by >0, 5"’:5—‘7‘ If our domain is a fractal, we need to know what the
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Fig. 0.3. Approximation of the Sierpinski gasket by graphs G,

“Laplacian” on it is. This problem contains somewhat contradictory fac-
tors. Since fractals like the Sierpinski gasket and the Koch curve do not
have any smooth structures, to define differential operators like the Lapla-
cian is not possible from the classical viewpoint of analysis. To overcome
such a difficulty is a new challenge in mathematics and this is what analysis
on fractals is about.

During the 1970s and 1980s, physicists tried to describe phenomena on
fractals. They succeeded in calculating some of the physical characteris-
tics of fractals, for example, the spectral exponent, which should describe
the distribution of the eigenstates. (See, for example, [118] and [75] for
reviews of studies in physics.) However they did not know how to define
“Laplacians” on fractals. See Note and References of Chapter 4 for details.

Motivated by studies in physics, Kusuoka [106] and Goldstein [51] in-
dependently took the first step in the mathematical development. They
constructed “Brownian motion” on the Sierpinski gasket. Their method
of construction is now called the probabilistic approach. First they con-
sidered a sequence of random walks on the graphs which approximate the
Sierpinski gasket and showed that by taking a certain scaling factor, those
random walks converged to a diffusion process on the Sierpinski gasket. To
be more precise, let us define the Sierpinski gasket. Let {p;,p2,p3} be a set
of vertices of an equilateral triangle in C. Define f;(2) = (2 — p;)/2 + p; for
i =1,2,3. Then The Sierpinski gasket K is the unique non-empty compact
subset K of R that satisfies

K = fi(K)U f2(K) U f3(K).

See Figure 0.2. Let Vo = {p1,p2,p3}. Define a sequence of finite sets
{Vm}m>o0 inductively by Vin41 = f1(Vin) U f2(Vin) U f3(Vin). Then we have
the natural graph G,, whose set of vertices is V,,. (See Figure 0.3.)
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For p € V,,, let V;,, , be the collection of the direct neighbors of p in V.
Observe that #(Vinp) = 4if p & Vo and #(Vpn p) = 2if p € Vg, where #(A)
is the number of elements in a set A. Let Xt(m) be the simple random walk
on G,,. (This means that if a particle is at p at time ¢, it will move to
one of the direct neighbors with the probability #(V,)~! at time t + 1.)
What Kusuoka and Goldstein proved was that

X(m) s Xt

5-m¢
as m — oo, where X; was a diffusion process, called Brownian motion,
on the Sierpinski gasket. In this probabilistic approach, a Laplacian is
the infinitesimal generator of the semigroup which is associated with the
diffusion process.

Barlow and Perkins [20] followed the probabilistic approach and obtained
an Aronson-type estimate of the heat kernel associated with Brownian mo-
tion on the Sierpinski gasket. See Notes and References of Chapter 5.
Then, in [116], Lindstrgm extended this construction of Brownian motion
to nested fractals, which is a class of finitely ramified self-similar sets with
strong symmetry. See 3.8 for the definition of nested fractals. (Roughly
speaking, finitely ramified self-similar sets are the self-similar sets which
become disconnected if one removes a finite number of points. See 1.3 for
details.)

On the other hand, in [82], a direct definition of the Laplacian on the
Sierpinski gasket was proposed. Under this direct definition, one could de-
scribe the structures of harmonic functions, Green’s function and solutions
of Poisson’s equations. This alternative approach is called the analyti-
cal approach. Instead of the sequence of random walks, one considered
a sequence of discrete Laplacians on the graphs and then proved that by
choosing a proper scaling, those discrete Laplacians would converge to a
good operator, called the Laplacian on the Sierpinski gasket. More pre-
cisely, let £(V;,) = {f : f maps V,, to R}. Then define a linear operator
Ly : €(Vin) — £(Vi) by

(Lmw)(P) = Y (u(g) — u(p))
q€EVm p

for any u € ¢(V;,) and any p € V,,,. This operator L,, is the natural discrete
Laplacian on the graph G,,. Then the Laplacian on the Sierpinski gasket,
denoted by A, is defined by

5™(Lmu)(p) — (Au)(p)

as m — o0o. This A is now called the standard Laplacian on the Sierpinski
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gasket. (Of course, it needs to be shown that A is a meaningful operator
in some sense with a non-trivial domain, as we will show in the course of
this book. Also we will explain why 5™ is the proper scaling. See 3.7,
in particular, Example 3.7.3.) This analytical approach was followed by
Kusuoka [107] and Kigami [83], where they extended the construction of
the Laplacians to more general class of finitely ramified fractals.

Since those early studies, many people have studied analysis on fractals
and obtained numerous results using both approaches. Naturally the two
approaches are complementary to each other and share the same goal. In
this book, we will basically follow the analytical approach and study Dirich-

.let forms, Laplacians, eigenvalues of Laplacians and heat kernels on post
critically finite self-similar sets. (Post critically finite self-similar sets are
the mathematical formulation of finite ramified seif-similar sets. See 1.3.)
The advantage of the analytical approach is that one can get concrete and
direct description of harmonic functions, Green'’s functions, Dirichlet forms
and Laplacians. On the other hand, however, studying the detailed struc-
ture of the heat kernels, like the Aronson-type estimates, we need to employ
the probabilistic approach. (Barlow’s lecture note [6] is a self-contained and
well-organized exposition in this direction. See also Kumagai [104] for a
review of recent results.) Moreover, the probabilistic approach can be ap-
plied to infinitely ramified self-similar sets, for example, the Sierpinski car-
pet (Figure 0.4) as well. In the series of papers, [7, 8, 9, 10, 11, 12], Barlow
and Bass constructed Brownian motions on the (higher dimensional) Sier-
pinski carpets and obtained the Aronson-type estimate of the associated
heat kernels by using the probabilistic approach. Except for Kusuoka and
Zhou [109], so far, the analytical approach has not succeeded in studying
analysis on infinitely ramified fractals.

One may ask “why do you only study self-similar sets?”. Indeed, self-
similar sets are a special class of fractals and there are no objects in nature
which -have the exact structures of self-similar sets. The reason is that
self-similar sets are perhaps the simplest and the most basic structures in
the theory of fractals. They should give us much information on what
would happen in the general case of fractals. Although there have been
many studies on analysis on fractals, we are still near the beginning in
the exploration of this field. We hope that this volume will contribute to
fruitful developments in the future.

The organization of this book is as follows. In the first chapter, we
will explain the basics of the geometry of self-similar sets. We will give the
definition of self-similar sets, study topological structures of self-similar sets
and introduce self-similar measures on them. The key notion is the self-
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Fig. 0.4. Sierpinski carpet

similar structure which is a purely topological description of a self-similar
set. See 1.3. Also, we will define post critically finite self-similar structure
in 1.3, which will be our main stage of analysis on fractals.

In Chapter 2, we will study analysis on finite sets, namely, Dirichlet forms
and Laplacians. The important fact is that those notions are closely related
to electrical networks and that the effective resistance associated with them
gives a distance on the finite set. Getting much help from this analogy with
electrical networks, we will study the convergence of Dirichlet forms on a
sequence of finite sets. This convergence theory will play an essential role
in constructing Dirichlet forms and Laplacians on post critically finite self-
similar sets in the next chapter.

Chapter 3 is the heart of this book, where we will explain how to con-
struct Dirichlet forms, harmonic functions, Green’s functions and Lapla-
cians on post critically finite self-similar sets. The key notion here is the
“harmonic structure” introduced in 3.1. In this chapter, we will spend
many pages to argue how to deal with the case when a harmonic struc-
ture is not regular and also when K\Vj is not connected, where K is the
self-similar set and Vp corresponds to the boundary of K. These cases are
of interest and sometimes really make a difference. However one would
still get most of the essence of the theory by assuming that the harmonic
structure is regular and that K'\V; is connected. So the reader may do so
to avoid too many proofs.

In Chapter 4, we will study eigenvalues and eigenfunctions of Laplacians
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on post critically finite self-similar sets. We will obtain a Weyl-type es-
timate of the distribution of eigenvalues in 4.1 and show the existence of
localized eigenfunctions in 4.4.

In the final chapter, we will study (Dirichlet or Neumann) heat kernels
associated with Laplacians (or Dirichlet forms). In 5.2, it will be shown that
the parabolic maximum principle holds for solutions of the heat equations.
In 5.3, we will get on-diagonal estimates of heat kernels as time goes to
zero.

This book is based on my graduate course at Cornell University in the
fall semester, 1997. I would like to thank the Department of Mathematics,
Cornell University for their hospitality. In particular, I would like to express
my sincere gratitude to Professor R. S. Strichartz, who suggested that I
wrote these lecture notes, and gave me many fruitful comments on the
manuscript. I also thank Dr. C. Blum and Dr. A. Teplyaev who attended
my lecture and gave me many useful suggestions. I am also grateful to the
Isaac Newton Institute of Mathematical Science, University of Cambridge,
where a considerable part of the manuscript was written during my stay.
I would express my special thanks to Professors M. T. Barlow and R. F.
Bass who carefully read the whole manuscript and helped me to improve
my written English. I would also like to thank all the people who gave
me valuable comments on the material; among them are Professors M. L.
Lapidus, B. M. Hambly, V. Metz, T. Kumagai, Mr. T. Shimono and Mr. K.
Kuwada. Finally I would like thank the late Professor Masaya Yamaguti,
who was my thesis adviser and introduced me to the study of analysis on
fractals. '



1
Geometry of Self-Similar Sets

In this chapter, we will review some basics on the geometry of self-similar
sets which will be needed later. Specifically, we will explain what a self-
similar set is (in 1.1), how to understand the structure of a self-similar
set (in 1.2 and 1.3) and how to calculate the Hausdorff dimension of a
self-similar set (in 1.5).

The key notion is that of a “self-similar structure” introduced in 1.3,
which is a description of a self-similar set from a purely topological view-
point. As we will explain in 1.3, the topological structure of a self-similar
set is essential in constructing analytical structures like Laplacians and
Dirichlet forms. More precisely, if two self-similar sets are topologically the
same (i.e., homeomorphic), then analytical structure on one self-similar set
can be transferred to another self-similar set through the homeomorphism.

In particular, we will introduce the notion of post critically finite self-
similar structures, on which we will construct the analytical structures like
Laplacians and Dirichlet forms in Chapter 3.

1.1 Construction of self-similar sets

In this section, we will define self-similar sets on a metric space and show
an existence and uniqueness theorem for self-similar sets. First we will
introduce the notion of contractions on a metric space.

Notation. Let (X, d) be a metric space. For z € X and r > 0,

B (z)={y:y € X,d(z,y) <r}

Definition 1.1.1. Let (X,dx) and (Y,dy) be metric spaces. A map f :

8



1.1 Construction of self-similar sets 9

X — Y is said to be (uniformly) Lipschitz continuous on X with respect
to dx,dy if

_ dy(f(2), f(¥)) _
L= z:.yesglfi,)z#y dX (Z y)

The above constant L is called the Lipschitz constant of f and is denoted
by L = Lip(f).

Obviously, by the above definition, a Lipschitz continuous map is con-
tinuous.

Definition 1.1.2 (Contraction). Let (X,d) be a metric space. If f :
X — X is Lipschitz continuous on X with respect to d and Lip(f) < 1,
then f is called a contraction with respect to the metric d with contraction
ratio Lip(f). In particular, a contraction f with contraction ratio r is called
a similitude if d(f(z), f(y)) = rd(z,y) for all z,y € X.

Remark. If f is a similitude on (R™, dg), where dg is the Euclidean distance
on R", then there exist a € R®, U € O(n) and r > 0 such that f(z) =
rUz + a for all z € R™. (Exercise 1.1)

The following theorem is called the “contraction principle”.

Theorem 1.1.3 (Contraction principle). Let (X,d) be a complete met-
ric space and let f : X — X be a contraction with respect to the metric d.
Then there exists a unique fized point of f, in other words, there exists a
unique solution to the equation f(x) = z. Moreover if x, is the fized point
of f, then {f™(a)}n>0 converges to z. for all a € X where f™ is the n-th
iteration of f.

Proof. If r is the ratio of contraction of f, then for m > n,

d(f™@), f™(@) <A@ T @)+ + A ), @)
€ (4ot ™l () < e ).

Hence {f"(a)}n>o0 is a Cauchy sequence. As (X,d) is complete, there
exists z, € X such that f*(a) — z. as n — oo. Using the fact that
f"*+)(a) = f(f™(a)), we can easily deduce that z, = f(z.).

Now, if f(z) = z and f(y) = y, then d(z,y) = d(f(z), f(y)) < rd(z,y).
Therefore d(z,y) = 0 and = = y. So we have uniqueness of fixed points. O

Remark. In general, for a mapping f from a set to itself, a solution of
f(z) = z is called a fixed point or an equilibrium point of f.
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We now state the main theorem of this section, which ensures uniqueness
and existence of self-similar sets.

Theorem 1.1.4. Let (X,d) be a complete metric space. If f; : X — X is
a contraction with respect to the metric d for i = 1,2,... ,N, then there
erists a unique non-empty compact subset K of X that satisfies

K= fi(K)U---U fn(K).
K is called the self-similar set with respect to { f1, f2,...,fn}-

Remark. In other literature, the name “self-similar set” is used in a more
restricted sense. For example, Hutchinson [76] uses the name “self-similar
set” only if all the contractions are similitudes. Also, in the case that all
the contractions are affine functions on R™, the associated set may be called
a self-affine set.

The contraction principle is a special case of Theorem 1.1.4 where N = 1.
In the rest of this section, we will give a proof of Theorem 1.1.4. Define

FA)= |J fi4
1<iEN

for A C X. The main idea is to show existence of a fixed point of F. In
order to do so, first we choose a good domain for F, defined by

C(X)={A: A is a non-empty compact subset of X}.

Obviously F' is a mapping from C(X) to itself. Next we define a metric é
on C(X), which is called the Hausdorff metric on C(X).

Proposition 1.1.5. For A, B € C(X), define
6(A,B) = inf{r > 0:U,(A) 2 B and U,(B) 2 A},
where Up(A) = {r € X : d(z,y) < r for some y € A} = UycaB,(y). Then

6 is a metric on C(X). Moreover if (X,d) is complete, then (C(X),6) is
also complete.

Before giving a proof of the above proposition, we recall some standard
definitions in general topology.

Definition 1.1.6. Let (X, d) be a metric space and let K be a subset of
X.

(1) A finite set A C K is called an r-net of K for 7 > 0 if and only if
UzGABr(m) =2 K.

(2) K is said to be totally bounded if and only if there exists an r-net of
K for any r > 0.



