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1

Propositional Logic

Logic is the basis for distinguishing what may be correctly inferred from a given
collection of facts. Propositional logic, which is also called propositional calculus,
studies logical propositions and their combinations using logical connectives.
Propositional logic is also named as zero-order logic because it does not use quantifiers,
namely quantifiers range over nothing. This chapter defines the meaning of the
symbolism and gives various propositional logical properties that are usually used without
explicit mention. Only two-valued logic is studied in this chapter, i. e. , each statement

is either true or false. Multi-valued logic, in which statements have one of more than

two values, involves fuzzy sets theory whose detailed discussion is out of the scope of the

book. Propositional logic has vast area of applications ranging from natural science to
social science. Later in this chapter, some examples of applications in computer science

such as circuit design and verification of computer program correctness are presented.
1.1 Propositions and Connectives

In mathematical reasoning we need to use declarative sentences to state conditions and
conclusions. These sentences are called propositions, which are the basic building
blocks of logic. A proposition is a declarative sentence that is either true or false, but
not both. We use the lower case letters of the alphabet such as p,q,r,s, --to denote
propositions. The truth value of a proposition is true, denoted by T or 1, if it is a true
proposition and false, denoted by F or 0, if it is a false proposition. The following are

examples of propositions.
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EXAMPLE 1.1.1 Each of these declarative sentences is a proposition ;
J2 is irrational.

Beijing is the capital of China.

1+3=5.

9 +10=<12.

We'll live on the Moon by the end of this century.

S R e

Propositions 1 and 2 are true, and therefore their truth values are 1, whereas 3 and 4
are false, so their truth values are 0. The fifth sentence is also a proposition, although
at present we do not know its truth value. But by the end of this century, we’ll know its
truth value. Some sentences that are not propositions are given in the following

example.

EXAMPLE 1.1.2 Consider the following sentences
1. No smoking.
2. Is there life on the Moon?
3..2=2, :
4. x>y.

Sentences 1 and 2 are not propositions because they are not declarative sentences.
Sentences 3 and 4 are not propositions because they are neither true nor false, since the

variables in these sentences have not been assigned values.

The propositions in EXAMPLE 1. 1.1 are called primitive propositions, for there is no
way to break them down into simpler propositions. Compound proposition, on the
other hand, is formed by applying logical operators to one or more primitive
propositions. The logical operators, also called connectives, are denoted by the
following symbols and words:

not, negation.

and, conjunction.

==
A

V or, disjunction.
— conditional, implication.
>

if and only if, biconditional.
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DEFINITION 1.1.1 Let p be a proposition. The negation of p, denoted by —p, is a
new proposition. If p is true, then —p is false. If p is false, then —p is true. The

proposition —p is read “not p”.

EXAMPLE 1.1.3 Let p denote the proposition “Three Gorges Project is located in
Yichang”. Then —p is “Three Gorges Project is not located in Yichang. ”

The negation of a proposition can be regarded as the result of the operation of Negation
Operator on a proposition. The other connectives introduced above can also be used to

construct compound propositions from two or more existing propositions.

DEFINITION 1.1.2 Let p and ¢q be propositions. The compound proposition “p and
q” , denoted by p A ¢, is the proposition that is true when both p and ¢ are true and is
false otherwise. The proposition p A g is called the conjunction of p and q.

EXAMPLE 1.1.4 Translate these sentences into logical expressions.

1. Jane likes singing and dancing.

2. Ruth and Richard are classmates.

3. The sun shone on the sea and the waves danced and sparkled.

4. Jack is an intelligent child, but not diligent in his work.

Solution .

1. Let p and g represent the primitive propositions “Jane likes singing” and “Jane
likes dancing” , respectively. The compound proposition “Jane likes singing
and dancing” can be expressed as p A g.

2. It is a primitive proposition. We can use a letter p to represent it.

3. Let p,q and r denote “The sun shone on the sea” , “The waves danced” and
“The waves sparkled”, respectively. The compound proposition can be
represented as p Ag Ar.

4. Let p and q denote the propositions “Jack is an intelligent child” and “Jack is
diligent in his work”, respectively. Then this compound proposition can be

represented as p A —gq.

DEFINITION 1.1.3 Let p and ¢ be propositions, the expression p \/ ¢ denotes the
disjunction of p and ¢, and is read “p or ¢”. The proposition p V ¢ is false when p and
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q are both false, and true otherwise.

We use the connective “or” in disjunction in the inclusive sense, that is, a disjunction

is true when at least one of the two propositions is true.

EXAMPLE 1.1.5 Let p denote the proposition “Advanced Mathematics is a required
course for college freshmen” and ¢ denote “Margaret Mitchell wrote ¢ Gone with the
wind’”. Then p V ¢ is “ Advanced Mathematics is a required course for college

freshmen, or Margaret Mitchell wrote ‘ Gone with the wind’ . ”

Sometimes, we use or in an exclusive sense. The exclusive or is denoted by @®. The
proposition p @ q is true if one or the other but not both of the propositions p and ¢ is
true. One way to express p @ ¢ for p and ¢ in the above example is “ Advanced
Mathematics is a required course for college freshmen, or Margaret Mitchell wrote

‘ Gone with the wind’ , but not both. ”

DEFINITION 1.1.4 Let p and g be propositions. The implication p — ¢ is the
proposition which is false when p is true and g is false, and true otherwise. p is called
the antecedent, premise, or hypothesis, and g is called the consequence or conclusion

of p—q.

An implication is sometimes called a conditional statement. Some common ways to
read the expression p—q are “if p then ¢”, “p implies ¢”, “p is sufficient for ¢”,
“since p, therefore ¢”, “p only if ¢”, “gq whenever p”, “q is necessary for p”, “q

follows from p”, “q if p”, “—p unless ¢”.

EXAMPLE 1.1.6 Denote the following propositions in symbolic forms, and find their
truth values.

1. If 2 +3 =5, then snow is white.

2. If 2 +355, then snow is white.

3. If 2 +355, then snow is not white.

4. If 2 +3 =5, then snow is not white.

5. 4 is a divisor of a only if 2 is a divisor of @, where a is a given positive integer.

6. 4 is not a divisor of a unless 2 is a divisor of a, where a is a given positive

integer.
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Solution : Let p and q denote “2 +3 =5” and “snow is white” , respectively. Then both
p and q are true. The propositions 1, 2, 3 and 4 can be expressed as p—q,—p—q,
—p— —q and p — — q, respectively, and they have truth values 1,1,1,0,

respectively.

Let r be “4 is a divisor of a”, s be “2 is a divisor of a”. The proposition 5 and
proposition 6 are in the form of r—s. If a is really divisible by 4, then a is also
divisible by 2. Therefore, r—s is true. If a is not divisible by 4, then r—s is still true

no matter whether a is divisible by 2, since r is false.

From EXAMPLE 1. 1. 6, we see that, the way we have defined implications is more
general than the meaning attached to implications in the English language. For
instance, proposition 5 is an implication used in normal language, since there is a
relationship between the hypothesis and the conclusion. However, in proposition 1,
there is no relationship between the hypothesis and conclusion. In mathematical

reasoning we consider implications more general than in English.

DEFINITION 1.1.5 The biconditional of two propositions p and g is denoted by p«>q,
which is read “p if and only if ¢” or “p is necessary and sufficient for ¢”. The

proposition p <> q is true when p and ¢ have the same truth values, and is false

otherwise.

Sometimes “p if and only if ¢” is abbreviated as “p iff ¢”.

EXAMPLE 1.1.7 Represent the following sentences in logical expressions.

1. 2 is a prime if and only if /5 is a rational number.
2. If two lines A and B are parallel, then their corresponding angles are equal,
and vice versa.

Solution .

1. Let p denote “2 is a prime” and g denote “J/5 is a rational number”. The
proposition 1 can be expressed as p<+q, its truth value is 0.

2. Letr and s denote “A and B are parallel” and “the corresponding angles of A
and B are equal”, respectively. Then the proposition 2 can be represented as

r<+s, which has truth value 1.
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Truth tables are used to display the relationships between the truth values of
propositions, where we write “0” for false and “1” for true. As an example, Table
1.1.1 is the truth table for the propositions obtained from p and ¢ by applying the six
logical operators defined above.

Table 1.L1.1 The truth table for the Negation of Proposition, the Conjunction, Disjunction,
Exclusive Or, Implication and Biconditional of two Propositions

P | g —p pAg pVg PDg P9 Pq
0|0 1 0 0 0 1 1
g1 1 1 0 1 1 1 0
1|0 0 0 1 1 0 0
go44 0 1 1 0 1 1

The four possible truth assignments for p and ¢ can be listed by any order. But the
particular order presented above will be proved useful.

We can construct compound propositions using the logical operators defined so far.
Generally parentheses are used to specify the order in which the logical operators in a
compound proposition are to be applied. However, to reduce the number of
parentheses, we define the hierarchy of evaluation for the connectives of the

propositional calculus as: —, A,V ,— and «.

EXAMPLE 1.1.8 Let p,q and r denote the propositions “Beijing is the capital of
China” , “Three Gorges Project is located in Yichang” and “1 +3#4” | respectively.
Find the truth values for the following compound propositions :

1. (=pVgq) A(—=pV—g)er

2. (pAr)—(q— —r)

3. (pVr) A(gV—=r)—(=pV—gq)
Solution: p, q and r have truth values 1, 1 and O, respectively. Consequently,
proposition 1, 2 and 3 have truth values 1,1 and 0, respectively.

WORDS AND EXPRESSIONS

propositional logic k2 R
proposition il
truth value HiE
primitive proposition JRF il
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compound proposition RE&wE
negation BRE
conjunction =y
disjunction PrEL
implication R
biconditional AR
truth table HER

EXERCISES 1.1

1. Which of the following sentences are propositions? What are the truth values of those
that are propositions?

a. Every map in the world can be colored using four colors.

27

Discrete Mathematics is a required course for Computer Science Major.

Is the computer available?

. 4 +x=5.

c.
d. z +3 is a positive integer.
e
f. 2 and 3 are even.

2. Let p,q be primitive propositions for which the implication p—q is false. Determine
the truth values of
—pAgq q—2p —g—=—p  pV—g  go—p
3. Let p,q,r denote the following statements;
p: It is sunny.
g: I'll go climbing.
r: I’'m free.
Convert the following statements into symbolic forms.

a. I am not free.

=

. If it is sunny, I'll go climbing.

. I'm free, but it is not sunny.

. I'll go climbing only if I am free and it is sunny.

If I'm free, I will go climbing unless it is not sunny.

Whenever it is sunny, I'll go climbing.

w o vBo

Sunny day and free time are sufficient for going climbing.
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4. Write the following statements in symbolic forms.

a.

b.

c
d
e.
f.
g

It is cold and it is windy.
If berries are ripe along the trail, hiking is safe if and only if grizzly bears have

not been seen in the area.

. It is necessary to wash the boss’s car to get promoted.

. Winds from the South imply a spring thaw.

If you watch television, your mind will decay, and vice versa.

Low humidity and sunshine are sufficient for me to play tennis this afternoon.

. It is snowing but, we will go out for a work.

5. Determine the truth value of each of the following compound propositions.

a.

b.

- 0o a0

If1+1=2, then2 +3 =5.
If1+1=3, then2 +3 =4.
If1+1=3, then2 +3 =5.

If people can fly, then 1 +2 =4.
1+1=2if and only if 2 +3 =4.
1>2 if and only if 3 >2.

6. There are some related implications that can be formed from p—¢. For example,

The proposition g—p is called the converse of p—q.

The proposition —p— —q is called the inverse of p—q.

The proposition —g— —p is called the contra-positive of p—q.

What are the contra-positive, converse, and inverse of the implication :

“You can ask for help whenever you need it” ?

In computer programming the If-Then and If-Then-Else decision structures arise in

languages such as BASIC and C++. The hypothesis p is often a relational expression

(such as x >5). This expression is a logical proposition that has truth value 0 or 1,

depending on the value of the variables contained in the expression (such as x) at that

point in the program. The conclusion ¢ may be an “executive statement” directing the

program to another line or causing some results to be printed. (So ¢ is not one of the

logical statements. ) When dealing with “if p then ¢”, in this text, the computer

executes ¢ only on the condition that p is true. For p being false, the computer goes to

the next instruction in the program sequence. For the decision structure “if p then ¢

else r” , g is executed when p is true and r is executed when p is false.
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i

What are the values of m,n after each of these statements is encountered in a given
C++ program, if m =3 ,n =8 before the first statement is reached? [ Here the values
of m,n following the execution of the statement in part (a) become the values of m,
n for the statement in part (b), and so on, through the statement in part (g). The
div operation in C++ retumns the integer part of a quotient. For example 6 div2 = 3,
S.divi=2]
a. fn-m==5, thenn=n-2;
b. f ((2*m==n) and (ndivd == 1)), thenn=4%xm-3;
.If[(n<8) or(mdiv2 == 2)], thenn=2*melse m =2 *n;
. If[(m<20) or (ndiv6 == 1)], thenm=m-n-5;
.If[(n==2%m) or(ndiv2 == 5)], thenm=m +2;

If [(ndiv3 == 3) and (mdiv3< >1)], then m=n;
.fmx*xn< >35thenn=3%*m+7.

O v L0 SR, B0

Fuzzy logic is used in artificial intelligence. In fuzzy logic, a proposition has a truth
value that is a number between 0 and 1, inclusive. A proposition with a truth value of 0
is false and one with a truth value of 1 is true. Truth values that are between 0 and 1
indicate varying degrees of truth. For instance, the truth value 0.99 can be assigned to
the statement “Niomi is happy”, since Niomi is very happy, and the truth value 0.3

can be assigned to the statement “Jack is happy” , since Jack is happy slightly less than
half at the time.

8.

The truth value of the negation of a proposition in fuzzy logic is 1 minus the truth
value of the proposition. What are the truth values of the statements “Niomi is not
happy” and “Jack is not happy” ?

. The truth value of the conjunction of two propositions in fuzzy logic is the minimum

of the truth values of the two propositions. What are the truth values of the statements
“Niomi and Jack are happy” and “Neither Niomi nor Jack is happy” ?

10. The truth value of the disjunction of two propositions in fuzzy logic is the maximum

of the truth values of the two propositions. What are the truth values of the

statements “Niomi is happy, or Jack is happy” and “Niomi is not happy, or Jack
is not happy” ?
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1.2 Propositional WFF and Assignment

In Section 1.1, we have defined primitive proposition and compound proposition. Primitive
proposition does not contain any connectives, and compound proposition contains at least
one connective. For example, if p and ¢ are propositions, then —p, —pV ¢, and (p<q)
V —g—p are compound propositions. But if p and ¢ are propositional variables, it
means that they have not been assigned any specified propositions. The expressions
above then are called well-formed formula or Wf for short, which can be pronounced as

woof”. A wif is a proposition only if the propositional variables contained in the wif

are assigned some specified propositions.
We define the wif by the following inductive definition for the set of propositional wifs.

DEFINITION 1.2.1
1. A propositional variable is a wif.
2. If A is a wif, then —A is a wif.
3. If A,B are wifs, then AAB,A\ B,A—B and A<>B are wifs.

For example, (p—¢) A (¢ger), (pAq) V—r, and pA (—qVr) are wifs, but pg—r
and (p—(g—q) are not.

We often use capital letters to refer to arbitrary propositional wffs. For example, if we
say, A is a wif, we mean that A represents some arbitrary wff. We also use capital
letters to denote specific propositional wffs. For example, if we want to discuss the wif
p A\ q A—r several times, we may let W =p A ¢ A—r. Then we can refer to W instead of
always writing down the symbols p Ag A—r.

Since there may exist some propositional variables in a wif, we usually don’t know its
truth value. If all propositional variables in a wff are assigned some specified
propositions, the wif becomes a proposition. For example, (pV q)—r is a wif. Let p
be “2 is a prime”, ¢ “3 is an even” and r “5 is a rational number”. Then p and r are
true, but q is false. This wff can be translated as “if 2 is a prime, or 3 is an even, then
5 is a rational number” , which is true. In fact, the truth value of a wif depends on the
truth values of the propositional variables contained in the wif.



