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Chapter 1

Phase Portraits of Linear Systems

1.1 Standard Forms of Linear Systems

First of all. consider system

(1.1)

Clearly,
x \ [ ccost
y )\ csint
is a solution of (1.1). For given ¢ > 0, in the t-z—y space, the solution

T = c cost, y = csint determines a curve [, which is called an integral
curve of (1.1) (see Figure 1.1).

Figure 1.1 The integral curve z = ¢ cost, y = ¢ sint of system (1.1)
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On z-y plane, the project of the integral curve I, is [.: 2% +y? = c°.

The z—y plane is called phase plane, and [. is called orbit (see Figure
1.2). When t increases, the direction of I, is also called the direction of
ls

Generally, we consider autonomous system

dx
E e P(-’L',y)a

dy

dt = Q(I~y)

Y

N\

Figure 1.2 The phase plane and the orbits of system (1.1)

Definition 1.1 In the t-z-y space, the curve defined by a solution
x = z(t), y = y(t) of (1.2) is called an integral curve. On z—y plane
the project of an integral curve is called an orbit and the x—y plane is
called phase plane. The combination of orbits are called phase portraits.
If (z*,y*) satisfies p(z*,y*) = q(z*,y*) = 0, then (z*,y*) is called a
singular point of (1.2). |
Now we consider linear system

da
e = ar + by,
’ (1.3)
% = cx + d;
dt ¥
where a, b, ¢, d are constants and satisfy
a b
0. 1.4
c dl7 (1.4)
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Obviously, (0,0) is unique singular point of (1.3). The equation
a— A b
=0, 1.5
c d— A )
that is,
M — (a+d)A+ad —be =0, (1.6)
is called characteristic equation of (1.3).
~ The two roots of (1.6) are denoted by
1
M=z [a,+d+ V@t d? —4((1,(1,—bc)}, (1.7)
and ]
Ao =5 [a +d—\/(a+d)?—4(ad— bc)] : (1.8)

which are called eigenvalues.

Via the eigenvalues, system (1.3) can be changed into some standard

forms. We use the following proposition to state them.

Proposition 1.1  Assume that A\jA; # 0. System (1.3) can be

changed into some standard forms as follows:

(i) If Ay and Mg are real and A; # Ao, then under the following

transformations
=(d— )z — by,
€= (a 1)x — by for b0,
n=(d— A2)z — by,
or
= —cx — A1)
§=—cx+(a—A)y, for ¢#£0,
n=—cx+ (a— A)y,

system (1.3) is changed into

d¢

== — X
dt 157
dn

a Aam)

(ii) If Ay = Ao = X # 0, then under the transformations

£ =,
) (>\ d)"r bz/‘ ’

(1.11)

(1.12)
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or
§=v,
for 0, 1.13
{77=cw+(/\*a)y,mc76 (1.13)
system (1.3) is changed into
d
d—f =X+,
(1.14)
@ = A1
at "

(iii) If Ay = a+if and A2 = a —ip (8 > 0), then under the transfor-
mations

= (d — a)z — by,
f=ld=—ajz=by o b0, (1.15)
n = Pz,
or
¢=—cw+{a—aj, for ¢#0, (1.16)
n= By,
system (1.3) is changed into
d
£=wm+ﬁn
q (1.17)
n_
T = BE+ am.

Remark 1.1 When b = ¢ = 0, system (1.3) becomes

de _ ax
ke (1.18)
b _,
at ~
which is of the same form with system (1.11). If @« = d = p, then (1.18)
becomes
dz .
— =z,
dt .
1.19
dy (1.19)

The systems (1.11), (1.14), (1.17) and (1.19) are called standard
forms of linear systems.
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1.2 Classification of Singular Points for Linear Systems

Now we consider the four standard forms above.

Case 1 When \; and A are real and \; # A, from (1.11) we have

dn Ao
_— = . 1.20
aE = ne -2
Obviously, equation (1.20) has solution
n=cere/ (1.21)

From (1.21) we draw the phase portraits of system (1.11) as Figure
1.3 and Figure 1.4.

il n
7 \\O
€ 3
(a) Ao <A1 <0 (b) A1 < A2 <0
1 1
) \O
3 ¢
(c) O < AL < A2 (d) 0 < Xy < A\;

Figure 1.3 The phase portraits of system (1.11) when A\ Ay > 0
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)

AN
N7

AN

N\
7

(a) A1 <0< A (b) A2 <0 < Ay

Figure 1.4 The phase portraits of system (1.11) when A2 <0

Definition 1.2 In Figure 1.3, the singular point (0,0) is called
node, that is, when A\ Ay > 0 and A\ # Aa, (0,0) is called node. When
Ay < A < 0or A < A < 0, (0,0) is called stable node (see Figure
1.3(a), Figure 1.3(b)). When A2 > A; > 0or Ay > X2 >0, (0,0) is called
unstable node (see Figure 1.3(c), Figure 1.3(d)).

Definition 1.3 1In Figure 1.4, the singular point (0,0) is called
saddle, that is, when A\ Ag < 0, (0,0) is called saddle.

Case 2 When A\; = Ay = A, from (1.14) we have
dn A

=1L — 1.22
dé  Ae+7’ ( )
that is,
And€ — &dn) = ndn. (1.23)
Multiplying the two sides of equation (1.23) by 1/5?, it follows that
A 9 — P
(1 — edn) _ d 24)
n n
Via (1.24) we get
AE
-y = In|n| + c. (1.25)

This implies that equation (1.22) has solution

£ = %(lulrﬂ + o). (1.26)
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From (1.26) we draw the phase portraits of system (1.14) as Figure
1.5.

4 n
(@) (0]
£ §
(a) A <0 (b) A>0

Figure 1.5 The phase portraits of system (1.14)

Definition 1.4 In Figure 1.5, the singular point (0, 0) is called de-
generate node, that is, when Ay = Ay = A # 0, (0,0) is called degenerate
node. When A < 0, (0,0) is called stable degenerate node. When \ > 0,
(0,0) is called unstable degenerate node.

Case 3 When \; = a+if and Ay = a—if (8 > 0), consider system
(1.17). Substituting £ = rcos# and n = rsinf into (1.17), it follows that
ﬂ cosf — ri sinf = arcosf + Brsin,

dt dt (1.27)
] de '
&r sinf +r— cosf = —fBrcosf + arsind.
dt dt

From (1.27) we get
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dr
a = ar,
where 3 > 0. (1.28)
do 8
a7

Using (1.28) we draw the phase portraits of system (1.17) as Figure

(a) a <0 a

Figure 1.6 The phase portraits of system (1.17)
when a # 0 and 8 >0

Definition 1.5 In Figure 1.6, the singular point (0,0) is called the
focus. When a < 0, (0, 0) is called the stable focus. When a > 0, (0,0)
is called the unstable focus.

Remark 1.2 In system (1.17), when a = 0, it follows that

d§
T? = B,
¢ (1.29)
dn _ e
a7
From (1.29) we have
dn £
— =2 1.30
d¢ n ( )
Thus the general solution of (1.30) is given by
E+n’=c (1.31)

When « = 0, the phase portrait of system (1.17) is given in Figure
1.7. Of course, when a = 0, from (1.28) we also can get Figure 1.7.
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Definition 1.6 In Figure 1.7, the singular point (0,0) is called
center.

Case4 Whenb=c=0and a=d=p #0, from (1.19) we get

dy _y
—= ==, 1.32
de =z ( )

Obviously, the general solution of (1.32) is
Yy = cx.

Thus we obtain the phase portrait of (1.19) as Figure 1.8.

n
Figure 1.7 The phase portraits of system (1.17)
when a =0 and 8 >0
y Yy
P . I i I

(a) p <O (b) u>0

Figure 1.8 The phase portraits of system (1.19)
whenb=c=0and a=d=p #0.
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Definition 1.7 In Figure 1.8, the singular point (0, 0) is called the

critical singular point.

1.3 Phase Portraits and Their Simulation for Some Linear Sys-
tems

Example 1.1 Draw the phase portrait for the system
dx
- =Y,
dt
1.33
dy (1.33)

= —2z —3y.
dt Ty

Solution Noting that a =0,b =1, ¢ = -2, and d = —3 in (1.33),
thus the characteristic equation is

—X 1 0
=2 =F=X|

that it,
A4+3r+2=0. (1.34)

Solving (1.34), we get two eigenvalues
/\1 =—1 and /\2 = —-2.

Under the transformations

€: (d—)\l).L—by
n=(d—Az)x — by,

that is
=21 —y,
{ $=-2r-y (1.35)

n=-r—y,
system (1.33) becomes
d¢

dt :('1 0)<§). (1.36)
@ 0 -2 n

dt
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On &-1 plane the phase portrait of system (1.36) is shown in Figure
1.9.

Figure 1.9 The phase portrait of system (1.36)

On the other hand, from (1.35), on z—y plane the 7 axis is expressed
by

y = —2zx, (1.37)
and the £ axis is expressed by
y=—zx. (1.38)
It is easy to test that y = —2zx and y = —z are two linear solutions
of the equation
d -2z -3
@ _ZLrToy (1.39)
dz y

From Figure 1.9 and (1.37), (1.38) we obtain the phase portrait of
system (1.33) as Figure 1.10(a).

Remark 1.3 The two linear solutions of the equation (1.39) can
be obtained using the following method.
Assume that
Yy = ax (1.40)

is a solution of the equation (1.39). Thus it follows that

_ —2r — 3ax

oxr



