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To Dad, for everything he taught me



Foreword to the First Edition

Digital system design has entered a new era. At a time when the design of micro-
processors has shifted into a classical optimization exercise, the design of embedded
computing systems in which microprocessors are merely components has become a
wide-open frontier. Wireless systems, wearable systems, networked systems, smart
appliances, industrial process systems, advanced automotive systems, and biologically
interfaced systems provide a few examples from across this new frontier.

Driven by advances in sensors, transducers, microelectronics, processor perfor-
mance, operating systems, communications technology, user interfaces, and pack-
aging technology on the one hand, and by a deeper understanding of human needs
and market possibilities on the other, a vast new range of systems and applications is
opening up. It is now up to the architects and designers of embedded systems to make
these possibilities a reality.

However, embedded system design is practiced as a craft at the present time.
Although knowledge about the component hardware and software subsystems is clear,
there are no system design methodologies in common use for orchestrating the overall
design process, and embedded system design is still run in an ad hoc manner in most
projects.

Some of the challenges in embedded system design come from changes in underly-
ing technology and the subtleties of how it can all be correctly mingled and integrated.
Other challenges come from new and often unfamiliar types of system requirements.
Then too, improvements in infrastructure and technology for communication and
collaboration have opened up unprecedented possibilities for fast design response to
market needs. However, effective design methodologies and associated design tools
haven’t been available for rapid follow-up of these opportunities.

At the beginning of the VLSI era, transistors and wires were the fundamental com-
ponents, and the rapid design of computers on a chip was the dream. Today the CPU
and various specialized processors and subsystems are merely basic components, and
the rapid, effective design of very complex embedded systems is the dream. Not only
are system specifications now much more complex, but they must also meet real-time
deadlines, consume little power, effectively support complex real-time user interfaces,
be very cost-competitive, and be designed to be upgradable.

Wayne Wolf has created the first textbook to systematically deal with this array
of new system design requirements and challenges. He presents formalisms and a
methodology for embedded system design that can be employed by the new type of
“tall-thin” system architect who really understands the foundations of system design
across a very wide range of its component technologies.

Moving from the basics of each technology dimension, Wolf presents formalisms
for specifying and modeling system structures and behaviors and then clarifies these
ideas through a series of design examples. He explores the complexities involved and
how to systematically deal with them. You will emerge with a sense of clarity about
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the nature of the design challenges ahead and with knowledge of key methods and
tools for tackling those challenges.

As the first textbook on embedded system design, this book will prove invaluable
as a means for acquiring knowledge in this important and newly emerging field. It will
also serve as a reference in actual design practice and will be a trusted companion in
the design adventures ahead. I recommend it to you highly.

Lynn Conway
Professor Emerita, Electrical Engineering and
Computer Science, University of Michigan



Preface to the First Edition

Microprocessors have long been a part of our lives. However, microprocessors have
become powerful enough to take on truly sophisticated functions only in the past few
years. The result of this explosion in microprocessor power, driven by Moore’s Law,
is the emergence of embedded computing as a discipline. In the early days of micro-
processors, when all the components were relatively small and simple, it was neces-
sary and desirable to concentrate on individual instructions and logic gates. Today,
when systems contain tens of millions of transistors and tens of thousands of lines
of high-level language code, we must use design techniques that help us deal with
complexity.

This book tries to capture some of the basic principles and techniques of this new
discipline of embedded computing. Some of the challenges of embedded computing
are well known in the desktop computing world. For example, getting the highest
performance out of pipelined, cached architectures often requires careful analysis
of program traces. Similarly, the techniques developed in software engineering for
specifying complex systems have become important with the growing complexity of
embedded systems. Another example is the design of systems with multiple processes.
The requirements on a desktop general-purpose operating system and a real-time
operating system are very different; the real-time techniques developed over the past
30 years for larger real-time systems are now finding common use in microprocessor-
based embedded systems.

Other challenges are new to embedded computing. One good example is power
consumption. While power consumption has not been a major consideration in tra-
ditional computer systems, it is an essential concern for battery-operated embedded
computers and is important in many situations in which power supply capacity is lim-
ited by weight, cost, or noise. Another challenge is deadline-driven programming.
Embedded computers often impose hard deadlines on completion times for programs;
this type of constraint is rare in the desktop world. As embedded processors become
faster, caches and other CPU elements also make execution times less predictable.
However, by careful analysis and clever programming, we can design embedded pro-
grams that have predictable execution times even in the face of unpredictable system
components such as caches.

Luckily, there are many tools for dealing with the challenges presented by com-
plex embedded systems: high-level languages, program performance analysis tools,
processes and real-time operating systems, and more. But understanding how all these
tools work together is itself a complex task. This book takes a bottom-up approach to
understanding embedded system design techniques. By first understanding the funda-
mentals of microprocessor hardware and software, we can build powerful abstractions
that help us create complex systems.



viii

Preface to the First Edition

A note to embedded system professionals

This book is not a manual for understanding a particular microprocessor. Why should
the techniques presented here be of interest to you? There are two reasons. First, tech-
niques such as high-level language programming and real-time operating systems are
very important in making large, complex embedded systems that actually work. The
industry is littered with failed system designs that didn’t work because their design-
ers tried to hack their way out of problems rather than stepping back and taking a
wider view of the problem. Second, the components used to build embedded systems
are constantly changing, but the principles remain constant. Once you understand the
basic principles involved in creating complex embedded systems, you can quickly
learn a new microprocessor (or even programming language) and apply the same fun-
damental principles to your new components.

A note to teachers

The traditional microprocessor system design class originated in the 1970s when
microprocessors were exotic yet relatively limited. That traditional class emphasizes
breadboarding hardware and software to build a complete system. As a result, it con-
centrates on the characteristics of a particular microprocessor, including its instruction
set, bus interface, and so on.

This book takes a more abstract approach to embedded systems. While I have taken
every opportunity to discuss real components and applications, this book is fundamen-
tally not a microprocessor data book. As a result, its approach may seem initially unfa-
miliar. Rather than concentrating on particulars, the book tries to study more generic
examples to come up with more generally applicable principles. However, I think that
this approach is both fundamentally easier to teach and in the long run more useful
to students. It is easier because one can rely less on complex lab setups and spend
more time on pencil-and-paper exercises, simulations, and programming exercises.
It is more useful to the students because their eventual work in this area will almost
certainly use different components and facilities than those used at your school. Once
students learn fundamentals, it is much easier for them to learn the details of new
components.

Hands-on experience is essential in gaining physical intuition about embedded sys-
tems. Some hardware building experience is very valuable; I believe that every student
should know the smell of burning plastic integrated circuit packages. But I urge you
to avoid the tyranny of hardware building. If you spend too much time building a
hardware platform, you will not have enough time to write interesting programs for it.
And as a practical matter, most classes don’t have the time to let students build sophis-
ticated hardware platforms with high-performance I/O devices and possibly multiple
processors. A lot can be learned about hardware by measuring and evaluating an exist-
ing hardware platform. The experience of programming complex embedded systems
will teach students quite a bit about hardware as well—debugging interrupt-driven
code is an experience that few students are likely to forget.
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A home page for the book (www.mkp.com/embed) includes overheads, instructor’s
manual, lab materials, links to related Web sites, and a link to a password-protected ftp
site that contains solutions to the exercises.
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Preface to the Second Edition

Embedded computing is more important today than it was in 2000, when the first
edition of this book appeared. Embedded processors are in even more products, rang-
ing from toys to airplanes. Systems-on-chips now use up to hundreds of CPUs. The
cell phone is on its way to becoming the new standard computing platform. As my col-
umn in /JEEE Computer in September 2006 indicated, there are at least a half-million
embedded systems programmers in the world today, probably closer to 800,000.

In this edition I’ ve tried to both update and to revamp. One major change is that the
book now uses the TI C55x DSP. I seriously rewrote the discussion of real-time sched-
uling. I have tried to expand on performance analysis as a theme at as many levels
of abstraction as possible. Given the importance of multiprocessors in even the most
mundane embedded systems, this edition also talks more generally about hardware/
software co-design and multiprocessors.

One of the changes in the field is that this material is taught at lower and lower
levels of the curriculum. What used to be graduate material is now upper-division
undergraduate; some of this material will percolate down to the sophomore level in
the foreseeable future. I think that you can use subsets of this book to cover both
more advanced and more basic courses. Some advanced students may not need the
background material of the earlier chapters and you can spend more time on software
performance analysis, scheduling, and multiprocessors. When teaching introductory
courses, software performance analysis is an alternative path to exploring micropro-
cessor architectures as well as software; such courses can concentrate on the first few
chapters.

The new Web site for this book and my other books is http://www.waynewolf.com.
On this site, you can find overheads for the material in this book, suggestions for labs,
and links to more information on embedded systems.

Acknowledgments
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Wicks and Naser Salameh of Texas Instruments gave me invaluable help in figuring
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of that code. My editor at Morgan Kaufmann, Chuck Glaser, knew when to be patient,
when to be encouraging, and when to be cajoling. (He also has great taste in sushi
restaurants.) And of course, Nancy and Alec patiently let me type away. Any problems,
small or large, with this book are, of course, solely my responsibility.

Wayne Wolf
Atlanta, GA
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This third edition reflects the continued evolution of my thoughts on embedded
computing and the suggestions of the users of this book. One important goal was
expanding the coverage of embedded computing applications. Learning about
topics like digital still cameras and cars can take a lot of effort. Hopefully this
material will provide some useful insight into the parts of these systems that most
directly affect the design decision faced by embedded computing designers. I also
expanded the range of processors used as examples. I included sophisticated pro-
cessors including the TI C64x and advanced ARM extensions. I also included the
PICIG6F to illustrate the properties of small RISC embedded processors. Finally,
I reorganized the coverage of networks and multiprocessors to provide a more uni-
fied view of these closely related topics. You can find additional material on the
course Web site at http://www.marilynwolf.us. The site includes a complete set of
overheads, sample labs, and pointers to additional information.

I'd like to thank Nate McFadden, Todd Green, and Andre Cuello for their editorial
patience and care during this revision. I'd also like to thank the anonymous reviewers
and Prof. Andrew Pleszkun of the University of Colorado for their insightful com-
ments on drafts. And I have a special thanks for David Anderson, Phil Koopman, and
Bruce Jacob who helped me figure out some things. I'd also like to thank the Atlanta
Snowpocalypse of 2011 for giving me a large block of uninterrupted writing time.

Most important of all, this is the right time to acknowledge the profound debt of
gratitude I owe to my father. He taught me how to work: not just how to do certain
things, but how to approach problems, develop ideas, and bring them to fruition. Along
the way, he taught me how to be a considerate, caring human being. Thanks, Dad.

Marilyn Wolf
Atlanta, GA
December 2011
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