®0 0006

ARITH RS A

(o - Hxkbt)

i
Lt T b i ORR A

China Machine Press

Marilyn Wolf
(%) iR LI T2k

COMPUTERS
AS COMPONENTS

THIRD EDITION : AV, 7

”,"ﬁ&‘ﬁ«

MARILYN WOLF

y

/
" '

&=

BARIHLES

(e3ZhR - 53k)

' (77
‘/// 1 20lerd G 171200260205
P

L Principles of Embedded Computing
System Design (third Edition)

COMPUTERS
AS COMPONENTS

| THED EDITION

MARILYN WOLF

Marilyn Wolf
(%) BT Tk &

LM T W WA A

China Machine Press

EHEMEE (CIP) #iE

AR R AR (3 SRR - A 3R /(35 IRAVK (Wolf, M.) & . —db s AL 1R
2013.1

CEEmT 155

[541/51 . Computers as Components: Principles of Embedded Computing System Design, Third Edition

ISBN 978-7-111-41228-1
Lojgée 1L 3K ML R 5Nl - £kt - %% V. TP36

LR AT 15475 CIP Bl b 1 (2013) 45 012569 +5

REILER S « B R
H R AR IR
APk A O Rk AR 0B ¥ 4T

AHMNEZIZS: B=F: 01-2012-7895

Computers as Components: Principles of Embedded Computing System Design, Third Edition

Marilyn Wolf

ISBN: 978-0-12-388436-7

Copyright © 2012 by Elsevier Inc. All rights reserved.

Authorized English language reprint edition published by the Proprictor.

Copyright © 2013 by Elsevier (Singapore) Pte Ltd. All rights reserved.

Elsevier (Singapore) Pte Ltd.

3 Killiney Road

#08-01 Winsland House |

Singapore 239519

Tel: (65) 6349-0200

Fax: (65) 6733-1817

First Published 2013

Printed in China by China Machine Press under special arrangement with Elsevier (Singapore) Pte Ltd.
This edition is authorized for sale in China only. excluding Hong Kong SAR, Macau SAR and Taiwan.

Unauthorized export of this edition is a violation of the Copyright Act. Violation of this Law is subject
to Civil and Criminal Penalties.

AT B SCREEIIR T Elsevier (Singapore) Pte Ltd. SEEUWURL LAl HiRREE (- th [ABEBE A shiadhe £ A
RO A el H B CASEAT SR A T o R TR T X M 3 v X) RS M bR S8 AEE 1
Nz LR ARG WSk 2

A5 U AT Elsevierly Dhbr%s . AR A1

HUBEC Tl R b CAEnSlipy bk T A #1225 MBBERES 100037)
oA T4kt 1k (%

AC SRR AT Ml EIAR A BR 2 o] L i)

2013422 F] 55 TRR S5 1 2 EN il

I186mm x 240mm » 32 5015

Pt 1545 ISBN 978-7-111-41228-1

@A 79.0000

WA S, w8 R, HIR, B, &AL ITIHRHR
FIRAL . (010) 88378991 88361066 HASMEL . (010) 88379604
A (010) 68326294 K8379649 68995259 ik 4154 : hzjsj@hzbook.com

BhRE BN

VAR, TR KR PR AR S TR ARG, (P85 I RAE B RR I &4
SRS T WERIE . IERXFER, ERELERE ERARERIANTZERZERIER .
SRR . TERNE R, RENPE R SEE FEORE RS, HEVIERR TS
Z WL db=HRI SARHFAIBCE AT LR, RIS B2 E, AU TS,
ER T FARNELE, REEFANE, XBAEFHEME, HOMEIFASHEE AR .

A, G EAKINHED T, BERNUEN ML ERRE, ME b AAMTFRH L
BY, O HHENLEE FAH O EREEE LS, Rk ;5 T B IR A g
R ERE, AREGESARLENFBENIR T, XESLEERERTEIRZ LR
JLHERBIEFM R RNEBRBM AT ZEEELEZ A, Fit, 5I#E—MEIMEE HEIBM
BNEF AR L REDFROHESER, b 5H R e, BREENHR R
REFEMBHZ B

U A H B B A R RIS “HREREE RS . B 1998 F£71 4G, HATHCK T
PEE SAE 1 #8% . BIXESMEREM L. @1 ZENAMS 1, FA15 Pearson, McGraw-
Hill, Elsevier, MIT, John Wiley & Sons, Cengage %t 3% & A Al T RIFIIE1EX
A, MBI A 8 80E Fh#h Hh B % H Andrew S. Tanenbaum, Bjarne Stroustrup, Brain W.
Kernighan, Dennis Ritchie, Jim Gray, Afred V. Aho, John E. Hopcroft, Jeffrey D. Ullman,
Abraham Silberschatz, William Stallings, Donald E. Knuth, John L. Hennessy, Larry L.
Peterson F KIMZ KM —MEHAESR, N “HEVRZEAR" HEREKR, HRE¥S. #R
Kk, REEASORME T, B 7 XEABRS LA,

“UHAMFAS" R TAERE T EPNNEERNR DR, ERRNERAMUEE THE
LRSS, AR B T B ME RN T ;. TR A Y FE RfEf bR
PR, ANELZRAEBITHERIERF. 245, “UREIREAS" EEER TEREA
B, XEEPFEAEFBRL T REFNOE, FHF2aRXANERBMMSEBFE. HEH
iR “EIUGTRRAE" 1E A PR th BER R 2 S SOE B AT R H

BUSIITES . BRIOEM . —RIOEFEE . BT BMRRE, XEREERIOE
A T BRI, FE T RAUR 2 5 EORE R 3R 00 A 52 B SO I BB IR AL,
HE RSB T KA FAEEEN— P FNEL, BAERRRERE, fik
BB N ERBA X B X — LR BN EERF B, FTAREEIMAEE SN0 TERH
BNES THRIE, ROMWEKAGENT:

£ ZEMYE. www.hzbook.com

B F B {4 . hzjsj@hzbook.com

BEARBIE. (010) 88379604

BRI X THEREREZTAHH 1S

BB 4R A5 . 100037 EFHBBBERT

To Dad, for everything he taught me

Foreword to the First Edition

Digital system design has entered a new era. At a time when the design of micro-
processors has shifted into a classical optimization exercise, the design of embedded
computing systems in which microprocessors are merely components has become a
wide-open frontier. Wireless systems, wearable systems, networked systems, smart
appliances, industrial process systems, advanced automotive systems, and biologically
interfaced systems provide a few examples from across this new frontier.

Driven by advances in sensors, transducers, microelectronics, processor perfor-
mance, operating systems, communications technology, user interfaces, and pack-
aging technology on the one hand, and by a deeper understanding of human needs
and market possibilities on the other, a vast new range of systems and applications is
opening up. It is now up to the architects and designers of embedded systems to make
these possibilities a reality.

However, embedded system design is practiced as a craft at the present time.
Although knowledge about the component hardware and software subsystems is clear,
there are no system design methodologies in common use for orchestrating the overall
design process, and embedded system design is still run in an ad hoc manner in most
projects.

Some of the challenges in embedded system design come from changes in underly-
ing technology and the subtleties of how it can all be correctly mingled and integrated.
Other challenges come from new and often unfamiliar types of system requirements.
Then too, improvements in infrastructure and technology for communication and
collaboration have opened up unprecedented possibilities for fast design response to
market needs. However, effective design methodologies and associated design tools
haven’t been available for rapid follow-up of these opportunities.

At the beginning of the VLSI era, transistors and wires were the fundamental com-
ponents, and the rapid design of computers on a chip was the dream. Today the CPU
and various specialized processors and subsystems are merely basic components, and
the rapid, effective design of very complex embedded systems is the dream. Not only
are system specifications now much more complex, but they must also meet real-time
deadlines, consume little power, effectively support complex real-time user interfaces,
be very cost-competitive, and be designed to be upgradable.

Wayne Wolf has created the first textbook to systematically deal with this array
of new system design requirements and challenges. He presents formalisms and a
methodology for embedded system design that can be employed by the new type of
“tall-thin” system architect who really understands the foundations of system design
across a very wide range of its component technologies.

Moving from the basics of each technology dimension, Wolf presents formalisms
for specifying and modeling system structures and behaviors and then clarifies these
ideas through a series of design examples. He explores the complexities involved and
how to systematically deal with them. You will emerge with a sense of clarity about

vi Foreword to the First Edition

the nature of the design challenges ahead and with knowledge of key methods and
tools for tackling those challenges.

As the first textbook on embedded system design, this book will prove invaluable
as a means for acquiring knowledge in this important and newly emerging field. It will
also serve as a reference in actual design practice and will be a trusted companion in
the design adventures ahead. I recommend it to you highly.

Lynn Conway
Professor Emerita, Electrical Engineering and
Computer Science, University of Michigan

Preface to the First Edition

Microprocessors have long been a part of our lives. However, microprocessors have
become powerful enough to take on truly sophisticated functions only in the past few
years. The result of this explosion in microprocessor power, driven by Moore’s Law,
is the emergence of embedded computing as a discipline. In the early days of micro-
processors, when all the components were relatively small and simple, it was neces-
sary and desirable to concentrate on individual instructions and logic gates. Today,
when systems contain tens of millions of transistors and tens of thousands of lines
of high-level language code, we must use design techniques that help us deal with
complexity.

This book tries to capture some of the basic principles and techniques of this new
discipline of embedded computing. Some of the challenges of embedded computing
are well known in the desktop computing world. For example, getting the highest
performance out of pipelined, cached architectures often requires careful analysis
of program traces. Similarly, the techniques developed in software engineering for
specifying complex systems have become important with the growing complexity of
embedded systems. Another example is the design of systems with multiple processes.
The requirements on a desktop general-purpose operating system and a real-time
operating system are very different; the real-time techniques developed over the past
30 years for larger real-time systems are now finding common use in microprocessor-
based embedded systems.

Other challenges are new to embedded computing. One good example is power
consumption. While power consumption has not been a major consideration in tra-
ditional computer systems, it is an essential concern for battery-operated embedded
computers and is important in many situations in which power supply capacity is lim-
ited by weight, cost, or noise. Another challenge is deadline-driven programming.
Embedded computers often impose hard deadlines on completion times for programs;
this type of constraint is rare in the desktop world. As embedded processors become
faster, caches and other CPU elements also make execution times less predictable.
However, by careful analysis and clever programming, we can design embedded pro-
grams that have predictable execution times even in the face of unpredictable system
components such as caches.

Luckily, there are many tools for dealing with the challenges presented by com-
plex embedded systems: high-level languages, program performance analysis tools,
processes and real-time operating systems, and more. But understanding how all these
tools work together is itself a complex task. This book takes a bottom-up approach to
understanding embedded system design techniques. By first understanding the funda-
mentals of microprocessor hardware and software, we can build powerful abstractions
that help us create complex systems.

viii

Preface to the First Edition

A note to embedded system professionals

This book is not a manual for understanding a particular microprocessor. Why should
the techniques presented here be of interest to you? There are two reasons. First, tech-
niques such as high-level language programming and real-time operating systems are
very important in making large, complex embedded systems that actually work. The
industry is littered with failed system designs that didn’t work because their design-
ers tried to hack their way out of problems rather than stepping back and taking a
wider view of the problem. Second, the components used to build embedded systems
are constantly changing, but the principles remain constant. Once you understand the
basic principles involved in creating complex embedded systems, you can quickly
learn a new microprocessor (or even programming language) and apply the same fun-
damental principles to your new components.

A note to teachers

The traditional microprocessor system design class originated in the 1970s when
microprocessors were exotic yet relatively limited. That traditional class emphasizes
breadboarding hardware and software to build a complete system. As a result, it con-
centrates on the characteristics of a particular microprocessor, including its instruction
set, bus interface, and so on.

This book takes a more abstract approach to embedded systems. While I have taken
every opportunity to discuss real components and applications, this book is fundamen-
tally not a microprocessor data book. As a result, its approach may seem initially unfa-
miliar. Rather than concentrating on particulars, the book tries to study more generic
examples to come up with more generally applicable principles. However, I think that
this approach is both fundamentally easier to teach and in the long run more useful
to students. It is easier because one can rely less on complex lab setups and spend
more time on pencil-and-paper exercises, simulations, and programming exercises.
It is more useful to the students because their eventual work in this area will almost
certainly use different components and facilities than those used at your school. Once
students learn fundamentals, it is much easier for them to learn the details of new
components.

Hands-on experience is essential in gaining physical intuition about embedded sys-
tems. Some hardware building experience is very valuable; I believe that every student
should know the smell of burning plastic integrated circuit packages. But I urge you
to avoid the tyranny of hardware building. If you spend too much time building a
hardware platform, you will not have enough time to write interesting programs for it.
And as a practical matter, most classes don’t have the time to let students build sophis-
ticated hardware platforms with high-performance I/O devices and possibly multiple
processors. A lot can be learned about hardware by measuring and evaluating an exist-
ing hardware platform. The experience of programming complex embedded systems
will teach students quite a bit about hardware as well—debugging interrupt-driven
code is an experience that few students are likely to forget.

Preface to the First Edition ix

A home page for the book (www.mkp.com/embed) includes overheads, instructor’s
manual, lab materials, links to related Web sites, and a link to a password-protected ftp
site that contains solutions to the exercises.

Acknowledgments

I owe a word of thanks to many people who helped me in the preparation of this
book. Several people gave me advice about various aspects of the book: Steve Johnson
(Indiana University) about specification, Louise Trevillyan and Mark Charney (both
IBM Research) on program tracing, Margaret Martonosi (Princeton University) on
cache miss equations, Randy Harr (Synopsys) on low power, Phil Koopman (Carn-
egie Mellon University) on distributed systems, Joerg Henkel (NEC C&C Labs) on
low-power computing and accelerators, Lui Sha (University of Illinois) on real-time
operating systems, John Rayfield (ARM) on the ARM architecture, David Levine
(Analog Devices) on compilers and SHARC, and Con Korikis (Analog Devices)
on the SHARC. Many people acted as reviewers at various stages: David Harris
(Harvey Mudd College); Jan Rabaey (University of California at Berkeley); David
Nagle (Carnegie Mellon University); Randy Harr (Synopsys); Rajesh Gupta, Nikil
Dutt, Frederic Doucet, and Vivek Sinha (University of California at Irvine); Ronald D.
Williams (University of Virginia); Steve Sapiro (SC Associates); Paul Chow (University
of Toronto); Bernd G. Wenzel (Eurostep); Steve Johnson (Indiana University);
H. Alan Mantooth (University of Arkansas); Margarida Jacome (University of Texas
at Austin); John Rayfield (ARM); David Levine (Analog Devices); Ardsher Ahmed
(University of Massachusetts/Dartmouth University); and Vijay Madisetti (Georgia
Institute of Technology). I also owe a big word of thanks to my editor, Denise Penrose.
Denise put in a great deal of effort finding and talking to potential users of this book
to help us understand what readers wanted to learn. This book owes a great deal to her
insight and persistence. Cheri Palmer and her production team did an excellent job on
an impossibly tight schedule. The mistakes and miscues are, of course, all mine.

Preface to the Second Edition

Embedded computing is more important today than it was in 2000, when the first
edition of this book appeared. Embedded processors are in even more products, rang-
ing from toys to airplanes. Systems-on-chips now use up to hundreds of CPUs. The
cell phone is on its way to becoming the new standard computing platform. As my col-
umn in /JEEE Computer in September 2006 indicated, there are at least a half-million
embedded systems programmers in the world today, probably closer to 800,000.

In this edition I’ ve tried to both update and to revamp. One major change is that the
book now uses the TI C55x DSP. I seriously rewrote the discussion of real-time sched-
uling. I have tried to expand on performance analysis as a theme at as many levels
of abstraction as possible. Given the importance of multiprocessors in even the most
mundane embedded systems, this edition also talks more generally about hardware/
software co-design and multiprocessors.

One of the changes in the field is that this material is taught at lower and lower
levels of the curriculum. What used to be graduate material is now upper-division
undergraduate; some of this material will percolate down to the sophomore level in
the foreseeable future. I think that you can use subsets of this book to cover both
more advanced and more basic courses. Some advanced students may not need the
background material of the earlier chapters and you can spend more time on software
performance analysis, scheduling, and multiprocessors. When teaching introductory
courses, software performance analysis is an alternative path to exploring micropro-
cessor architectures as well as software; such courses can concentrate on the first few
chapters.

The new Web site for this book and my other books is http://www.waynewolf.com.
On this site, you can find overheads for the material in this book, suggestions for labs,
and links to more information on embedded systems.

Acknowledgments

I’d like to thank a number of people who helped me with this second edition. Cathy
Wicks and Naser Salameh of Texas Instruments gave me invaluable help in figuring
out the C55x. Richard Barry of freeRTOS.org not only graciously allowed me to quote
from the source code of his operating system but he also helped clarify the explanation
of that code. My editor at Morgan Kaufmann, Chuck Glaser, knew when to be patient,
when to be encouraging, and when to be cajoling. (He also has great taste in sushi
restaurants.) And of course, Nancy and Alec patiently let me type away. Any problems,
small or large, with this book are, of course, solely my responsibility.

Wayne Wolf
Atlanta, GA

Preface to the Third Edition

This third edition reflects the continued evolution of my thoughts on embedded
computing and the suggestions of the users of this book. One important goal was
expanding the coverage of embedded computing applications. Learning about
topics like digital still cameras and cars can take a lot of effort. Hopefully this
material will provide some useful insight into the parts of these systems that most
directly affect the design decision faced by embedded computing designers. I also
expanded the range of processors used as examples. I included sophisticated pro-
cessors including the TI C64x and advanced ARM extensions. I also included the
PICIG6F to illustrate the properties of small RISC embedded processors. Finally,
I reorganized the coverage of networks and multiprocessors to provide a more uni-
fied view of these closely related topics. You can find additional material on the
course Web site at http://www.marilynwolf.us. The site includes a complete set of
overheads, sample labs, and pointers to additional information.

I'd like to thank Nate McFadden, Todd Green, and Andre Cuello for their editorial
patience and care during this revision. I'd also like to thank the anonymous reviewers
and Prof. Andrew Pleszkun of the University of Colorado for their insightful com-
ments on drafts. And I have a special thanks for David Anderson, Phil Koopman, and
Bruce Jacob who helped me figure out some things. I'd also like to thank the Atlanta
Snowpocalypse of 2011 for giving me a large block of uninterrupted writing time.

Most important of all, this is the right time to acknowledge the profound debt of
gratitude I owe to my father. He taught me how to work: not just how to do certain
things, but how to approach problems, develop ideas, and bring them to fruition. Along
the way, he taught me how to be a considerate, caring human being. Thanks, Dad.

Marilyn Wolf
Atlanta, GA
December 2011

Contents

Foreword to the First EdItiOn.........cc.ceeiiriiiciinececcceeeeee e v
Preface to the First Edition ... vii
Preface to the Second Edition..........ccooureviriiiieininincciiieieces s X
Preface to the Thitd BAition iusanunsmmmumimnaminsmsnssssisramnmsismaains Xi
CHAPTER 1 Embedded Computing........c.cccoeeeerrecrnensscnersscsnnnsssnnns 1
1.1 INtrOAUCHON ..o 1

1.2 Complex systems and miCrOPrOCESSOTS............vvrreerevenen. s 1

1.2.1 Embedding COMPULETSc.ceererrrererririereireeieisesssennaenes 2

1.2.2 Characteristics of embedded computing applications 4

1.2.3 Why use miCroprocessors?ovuererrerereuriersererensenes 6

1.2.4 Cyber-physical SYSEMScccveererereeereeieserereiesesenns 7

1.2.5 Challenges in embedded computing system design 8

1.2.6 Performance of embedded computing systems 9

1.3 The embedded system design ProCessoeererererererruerennne 10

1.3.1 REqUITEMENLS ...covevveereeercreneereiereieieseseseieseseseseneeesenes 12

1.3.2 SPeCification...........cccevvereerrereereieaeeereeeseeeeeseeee e 16

1.3.3 Architecture designcoveveveeieeeuerereiriieiereeeeenennns 17

1.3.4 Designing hardware and software components............. 19

1.3.D ‘Systein MEOTAON . ks sasesmsmvessmsssassmmsssumanmersssssss 19

1.3.6 Formalisms for system designcccceereerurereereuennn. 20

1.3.7 Structural desCription...........coeeueueueuerereiererrireeerereiennens 21

1.3.8 Behavioral descriptionccoceeeveverereenieeiseenreennnens 25

1.4 Design example: Model train controller.............ccvevevererenenne. 28

1.4.1 REqUITEMENLScvvvererrereieicieieeeieee e 29

1.4.2 DCC et 30

1.4.3 Conceptual Specificationcceeueverrerrresierersuerenenenns 32

1.4.4 Detailed Specification...........ccceceueuerrurerreesririeeeseenenene 35

1.4.5 Lessons learned.....cumssmsvis svmmsessssmsssssiomnssassss 42

1.5 A guided tour of this DOOKccceveverireieeerireriieieeiereieseseenes 42

1.5.1 Chapter 2: InStruCtion SEtscocoeeeerueeeueuemereuererennenns 43

1.5.2 Chapter 3: CPUScoeueeeueeereeeieeeeere e eesenenenens 43

1.5.3 Chapter 4: Computing platformscceererererrernnne 44

1.5.4 Chapter 5: Program design and analysis.........c.c.cceceuue. 44

1.5.5 Chapter 6: Processes and operating systems................. 45

1.5.6 Chapter 7: System design techniquesccccoeueernneee 46

1.5.7 Chapter 8: Networks and multiprocessors.................... 47

CHAPTER 2

CHAPTER 3

Contents xiii

1.6 SUMMATY ..o 47
What We 1€arned..........cooeviiiieiiniciiceieceeee e 48
Further readingco.coveeveiiiiiiiiciceceee s 48
QUESHIONE s dige i sneruiionssssssvssns ussnsn is555 78k aTosrssnrnnrenssesssvanssmeanessssnssenes 48
LLab EXCTCISER: & htchanasissonmchasssns ssmassussammvonionssssses i m s s s i 50
Instruction Setscccovrvmrieiinniin 51
2.1 INrOUCHION ..ovieieeiieeeiteiei ettt 51
2.2 PreliMinaries.....cccecueueeeeereeuesereisieeeesieseseesseseseesesesesesssnesenns 51
2.2.1 Computer architecture taxonomy............c.ceevrreverenenns. 52
2.2.2 Assembly languages..........cccoeuvueueieuerereieieieeneneieesenenes 54
2.2.3 VLIW PIOCESSOTLScvvvererererererereresesesesesesesesesesesesesesens 56
2.3 ARM PIOCESSOLvveveririietreieseseeessesesesesesesesesesesessasesesenes 57
2.3.1 Processor and memory organization...................c....... 58
2.3,2 Data OPETAONS cvsssmsessississsmsmumsisssssmsmmsismeri i 59
2.3.3 Flow Of CONLIOL......vevieiieieicieicirieieee e 66
2.3.4 Advanced ARM features..........ccoceuevererererererererererenenenens 72
2.4 PICmicro mid-range family........c.cccoceurveverrieiresrerenieieeirsnen. 73
2.4.1 Processor and memory organization....................o........ 73
2.4.2 Data OPErationscevevererereirrereseresesesesesesesesesesesesesens 73
2.4.3 Flow of cONtrol........coeeeiviereeiiriereeeecreeeer e 76
2.5 TICS5X DSPu.eiiiietee et 77
2.5.1 Processor and memory organization............................. 78
2:5.2: AddressInEANOAES ..c.ocvosisiivsismsisssissssasssisisssasoncsonmassensens 81
2.9.3 DAl OPCratioNSi. v ssssssnsessssssummsmnsessusmmssmam s 83
2.5.4 Flow of CONtrol.........ccoceemeieeeneiieieeeceeeesee e 84
2.5.5 C coding guidelinescceceeveeveereeeeeeeeeeereeeneeene, 86
2.6 TI COAX oottt 87
2T SUTITIATcsvessusons v oeenesssies s SEu s ST SRR 5 0 90
What: We leattied. ... v 90
Further reading.........ccccooveeiovieeieiieeeeceeee et 91
QUESLIONS ...ttt ettt et se e e e e e e eseeseeseeseesesaeenans 91
LAl BROTCISES sssiuisiin seussssass vnsios 65 o sressrvsasoessnssnssrssonssnnsesrsnsassssonsassn 93
CPUs......ccceenus SR L NS SAUT— 95
3.1 INrOAUCHON ..ovovvvieieiieieieretete ettt ese e aena 95
3.2 Programming input and OUtPUL..........c.cceeueeeueeeeeeeeennceennes 96
3.2.1 Input and output deviCescoovveevereueerererereeerrererrerennn 96
3.2.2 Input and output Primitives........ccecerererererererereerererenenens 98
3.2.3 Busy-wait I/O.....c.ccocoeeevereiieeeieeeeeeeeee e 99

3.2.4 INLEITUPLS c.cueeecceeeecee e 101

Xiv

Contents

CHAPTER 4

3.3 Supervisor mode, exceptions, and trapscccceeeveuenenne.. 114
3.3.1 Supervisor MOdeccevrveueererieirierririnresneeeieeennes 114
3.3.2 EXCEPLONS....ccueeeiiienieeeeeiesieteeeie et 115
D83 THAPS:cussvsiumsonsvmasososssmssinsssossssassssssass e s A aa s 115

3.4 CO-PIOCESSOTS ...vuveriniiveirenieieiesesitetesesee ettt esesese s eeeiena 115

3.5 Memory system mMeChaniSmS.........c.eeveeererervereereeieereererennens 116
3.5.1 CaCheS....voeeieiiiieieeirees e 116
3.5.2 Memory management units and address translation... 123

3.8 'CPU PerfOrNANGCE s uesssmsssmmmssmmmssnssmissmesssssssssssmis 128
3.6.1 Pipelining.......ccccevveriieriieiieiieieee et 128
3.6.2 Cache performanceoecveverivieriseenieieeeieeenns 132

3.7 CPU power CONSUMPHON..........cccevereuerireierereeeeeesesenessenesenes 133

3.8 Design example: Data COMPIESSOTccevevieirierirererenisieinnes 137
3.8.1 Requirements and algorithm...........cccccoeveeniiirennnnnn. 137
3.8.2 SpeCification.......c.ccceueeeuieiriiiereiisinieeeseeee e 140
3.8.3 Program designccoeveueeveeereieieieieeeeeeeee e 141
384 TeStNG....ooveueieeieecieeeete et 148

3.9 SUMMIAIY . sucimssmsissanimmnsmssssssasvomstinas s i sasssm oo 149

What We JeaThied. .cooesmumstbsmssmsnsnsensnsssssssosssivosissisasssmmsssssios 149

Further 1eadingc.ooeiviriiiieiiice e 150

QUESHIONS ...ttt eb e eneene 150

Lab EXETCISEScuvviuiieiiieietcnieeieicr ettt 153

Computing Platforms.........cccoceeerreeeccrnneereecccnneens 155

C A 0§51 (o) (1T T | USSR —— 155

4.2 Basic computing platforms..........ccceevevererereririeireereerereresenns 155
4.2.1 Platform hardware cCOMpONENtScoceeeuemerereerennes 156
4.2.2 Platform software COMPONENtSc.eoeueuerirerrerenenens 158

4.3 The CPU DUS sesmsassssnesssnsansvvsmss ivis i isasusssss o isiessasiississisansdin 159
4.3.1 Bus organization and protocolc.cccceeerernrrinunne 160
4.3.2 DMA ...ttt 167
4.3.3 System bus configurationscceeceerererrreeeeseninenee 170

4.4 Memory devices and SYSIEMSc.eeevereeeerereerenreieeneeeseeseseens 172
4.4.1 Memory system Organization.............c.cce.eveverereresiruenes 174

4.5 Designing with computing platformscccoeueeeiererinnnnne 176
4.5.1 Example platforms.........cocoveeevriereeernincreriresisrsnens 176
4.5.2 Choosing a platform...........cccccevverieeereeiieeneeenne 176
4.5.3 Intellectual Property.......cccoeeeeerueereeresrererienesseseernenenes 179
4.5.4 Development enVironmentsccoeevvveverereresererernnns 180
4.5.5 Debugging teChniques.........ccovvvrvrueeeuruereereeerisereeerenens 181

4.5.6 Debugging challenges.........ccoevevveenueeeeenieeceieenens 183

CHAPTER 5

Contents XV

4.6 Consumer electronics architeCture..........coceeveeeveceneeeuenne 185
4.6.1 Consumer electronics use cases and requirements... 185
4.6.2 File SYSLEIMS c.voveveriiieieiieirieieceere s eenesennne 187
4.7 Platform-level performance analysis..........ccccoeiiviiinninnnns 188
4.8 Design example: Alarm clocK.......ccooeeeveviiecnciiiinniiienne 193
4.8:1 REGUIEIIENTS cvvvorsmmsimmpssermssssmuemssnma s nsems 193
4.8.2 Specificationccoeverieeneiiinieireee e 194
4.8.3 System architeCtureoceeeeereemereerereereeieseeeneenenns 197
4.8.4 Component design and testingcccceevecrueueruennne 200
4.8.5 System integration and testingcccccoeecercvennnn 200
4.9 Design example: Audio playercccoccovevreenreieeenineenenenn. 200
4.9.1 Theory of operation and requirements 200
4.9.2 Specification.........ccceueeeecrieecrieenieirce e 202
4.9.3 System architeCture: ...uaismssosesssamros: 204
4.9.4 Component design and testingcccecvvccvccnrunnes 206
4.9.5 System integration and debuggingcc.cccceennene. 206
410 SUMIMATY «eoviirinieteeieeeiererte e s ene e 207
What We learned.........ccoooveeeiiiiiieniicieniiecice e 207
Burther reading:....sunizosssssssasssmssresssmssasssissassssesimsssssins 207
(G511 [0 1 P S O U 207
Lab EXEICISES ..cveiueieiieieiieieicii ittt 210
Program Design and Analysisccoeemrrrrnsssnsnnnnes 213
5.1 INrOdUCHION .ovevevineiieiee et 213
5.2 Components for embedded programs...........ccceevvvevriennes 214
5,2:1, State MACKINES oo husssomusssssassnsvanessssssmsspssssmssesss 214
5.2.2 Circular buffers and stream-oriented programming..216
5.2.3 Queues and producer/consumer systems................. 221
5.3 Models Of Programs...........cceveeeeeeereeeniereeeneeeseeesneieenesnenas 223
5.3.1 Data oW Eraphs:..sasssissmmssmesmmssesemmesmsnsis 224
5.3.2 Control/data flow graphsccccecevvevcicieiicneninnnnes 226
5.4 Assembly, linking, and loading...........cccceceverniieniinininnnns 228
5.4.1 ASSEMDIETS ..oouiiieeiiiiceece s 229
5.4.2 LinKiNg ..ovoveiiiiieieieeieiet sttt eevese s 233
5:4.3' Object code dESign .semsssessmnammsemsssssmmssesnys 235
5.5 CompilationtEChNIGUES wosmssssssussesssesesssnessossasssassssssasssuissss 236
5.5.1 The compilation ProCess..........ueereeerererecmruereerennenes 236
5.5.2 Basic compilation methodscceccvveveeeniivennnenns 237
5.5.3 Compiler Optimizationsecerevvrveereninvecrnenenenes 245
5.6 Program-level performance analysisc.ccccoveverueerennnes 254
5.6.1 Elements of program performance.............cccccoeeuuene 256

5.6.2 Measurement-driven performance analysis.............. 259

Xvi

Contents

CHAPTER 6

5.7 Software performance optimizationcceceeveureviiuennnnn. 262
5.7.1 Loop OptimizZations.........c.eeevereeuerirenirieeesieeeeeeeenene 262
5:7.2 Cache optimizations ..xc..sswssssesvsmmmsssmsssesson 264
5.7.3 Performance optimization strategies 265
5.8 Program-level energy and power analysis and
OPHMIZAtION 1. 266
5.9 Analysis and optimization of program Sizecccceee.... 270
5.10 Program validation and teSting...........ceceoeevereruererreeenenresnenns 271
5.10.1 Clear=box 1ESHNRE sovensessmssssmsisnemessvmssmmensas 271
5.10.2 Black-bOXteStiNgGcoveueerieierieriieieiieieeeeeic e 278
5.10.3 Evaluating functional testscccorererrerenreenennen. 279
5.11 Design example: Software modem...........ccceveeveerrrereenennnnen. 280
5.11.1 Theory of operation and requirements.................... 280
5.11.2 Specification.........cceuevvererieenicieinesieeeeceeeeeeene 283
5.11.3 System architeCturecoeevvvevreececerireeeniereenn. 283
5.11.4 Component design and testingccceeeevevennnne 284
5.11.5 System integration and testingcocccevecrerennee 285
5.12 Design example: Digital still cameracccceceveuevnunnee. 285
5.12.1 Theory of operation and requirements.................... 285
5.12.2 Specification.........ceeeveeeeeireieieineeeeeeceeeeeeeeees 290
5.12.3 System architeCtureoeevevererreirrereseerenrneeenes 293
5.12.4 Component design and testingccceueerennnne. 296
5.12.5 System integration and testingccceeervevruenne. 296
5.13 SUMMATY ..ot 296
What wWe learned...........cooervieeieciiiiniieicceeceees s 296
FUrther readingcecvveeeveirienieniceicecc et 297
L1 101 R 297
LABERETCISES o3 onsarasussnssosnionsssssnsssss sssve s soxss s5sss SRR e55REs FHELUESRHTAFERS 305
Processes and Operating Systemscccccvriinnee 307
6.1 INErOQUCHION ...ovevitinieniteieee ettt 307
6.2 Multiple tasks and multiple processes...........cccoveveverrurueunnee 308
6:2:1 Tasks and Processes s 308
6.3 Multitate SYStEMS i vusssnessssvsnsvissosissisesnsssassesssavssanonssssssssssss 310
6.3.1 Timing requirements ON ProCESSEScervererememenes 311
6.3.2 CPU USAZE MELTICS ..ovveveerereereiereeserieeseeneeseesesneaeees 316
6.3.3 Process state and schedulingcccceeveerveecncnnnne 316
6.3.4 Running periodiC proCesses..........ceurererrrrerirverereeren. 317
6.4 Preemptive real-time operating SyStems............ccceceeeeurueune 319
6.4.1 TWO basiC CONCEPLS.....c.evveuiereeieerrieiricieiereei e 320
6.4.2 Processes and CONtEXL........cuvvrrerurreerererercrmrrecereienens 321

6.4.3 Processes and object-oriented design............ccccceeuu. 324

