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I
INTRODUCTION

1. Definition of the subject

‘TEEORY of plasticity’ is the name given to the mathematical study of
stress and strain in plastically deformed solids, especially metals. This
follows the well-established precedent set by the ‘theory of elasticity’,
which deals with methods of calculating stress and strain in elastically
deformed solids, and not, as a literal interpretation suggests, with the
physical explanation of elasticity. The relation of plastic and elastic
properties of metals to crystal structure and cohesive forces belongs to
the subject now known as ‘metal physies’.

The theory of plasticity takes as its starting-point certain experimental
observations of the macroscopic behaviour of a plastic solid in uniform
states of combined stress. The task of the theory is twofold: first, to
construct explicit relations between stress and strain agreeing with the
observations as closely and as universally as need be; and second, to
develop mathematical techniques for calculating non-uniform distri-
butions of stress and strain in bodies permanently distorted in any way.
At the present time metals are the only plastic solids for which there is
enough data to warrant the construction of a general theory. For this
reason the theory is related specifically to the properties of metals,
though it may apply to other potentially plastic materials (e.g. ice, clay,
or rock).

By contrast with many other plastic solids the most striking attribute
of a metal is its capacity for cold-work. At ordinary temperatures, and
under favourable applied stresses, a dimensional change of twentyfold
can easily be obtained with a ductile metal, for example by compressing
or shearing a cylinder of copper. More severe strains are enforced locally
when a metal billet is extruded or pierced. The theory of plasticity is,
therefore, especially concerned with technological forming processes
such as the rolling of strip, extrusion of rods and tubes, drawing of wire,
" and deep-drawing of sheet. The purpose of the analysis is to determine
the external loads, the power consumption, and the non-uniform strain
and hardening due to the cold-working. Intense plastic strains are also
produced locally in many standard mechanical tests of metals, for in-
stance indentation by a conical die, the bending of a notched bar, or the
extension of a tensile specimen past the necking point. A rational account
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of the physical significance of these tests requires a knowledge of the
state of stress and the extent of the plastic zone.

At the other extreme, where the subjects of elasticity and plasticity
meet, a typical application is to predict the critical loading which just
causes a structural member to yvield plastically at its weakest point.
Between these extremes come problems where the plastic and elastic
strains are of a similar order of magnitude, as in a beam partly over-
strained by bending or twisting, or in a pressure vessel strengthened by
an initial permanent expansion.

2. Historical outline

The scientific study of the plasticity of metals may justly be regarded
as beginning in 1864. In that year Tresca published a preliminary
account of experiments on punching and extrusion, which led him to
state that a metal yielded plastically when the maximum shear stress
attained a critical value. Criteria for the yielding of plastic solids,
mainly soils, had been proposed before, for example by Coulomb (1773),
and had been applied by Poncelet (1840) and Rankine (1853) to problems
such as the calculation of earth-pressure on retaining walls; there appears,
however, to have been no earlier important investigation for metals.
Tresca’s yield criterion was applied by Saint-Venant to determine
the stresses in a partly plastic cylinder subjected to torsion or bending
(1870) and in a completely plastic tube expanded by internal pressure
(1872) (the first step towards the solution for a partly plastic tube was
taken by Turner in 1909). Saint-Venant also set up a system of five
equations governing the stresses and strains in two-dimensional flow,
and, recognizing that there is no one-one relation between stress and
total plastic strain, postulated that the directions of the maximum shear
strain-rate coincided at each moment with the directions of the maximum
shear stress. In 1871 Lévy, adopting Saint-Venant’s conception of an
ideal plastic material, proposed three-dimensional relations between
stress and rate of plastic strain.

There seems to have been no further significant advance until the
close of the century when Guest investigated the yielding of hollow
tubes under combined axial tension and internal pressure, and obtained
results broadly in agreement with the maximum shear-stress criterion.
During the next decade many similar experiments were performed,
mainly in England, with slightly differing conclusions. Various yield
criteria were suggested, but for many metals, as later and more accurate
work was to show, the most satisfactory was that advanced by von Mises
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(1913) on the basis of purely mathematical considerations; it was inter-
preted by Hencky some years afterwards as implying that yielding
occurred when the elastic shear-strain energy reached a critical value.
Von Mises also independently proposed equations similar to Lévy’s.
Between the two wars the subject was actively developed by German
writers. In 1920 and 1921 Prandtl showed that the two-dimensional
plastic problem is hyperbolic, and calculated the loads needed to indent
a plane surface and a truncated wedge by a flat die. Parallel experi-
ments by Nadai were in accord with these calculations, but it has been
shown recently that Prandtl’s work is defective in certain respects.
The general theory underlying Prandtl’s special solutions was supplied
in 1923 by Hencky, who also discovered simple geometrical properties
of the field of slip-lines in a state of plane plastic strain. It was some
time, however, before the equations governing the variation of the
velocity of flow along slip-lines were obtained (Geiringer, 1930) and even
longer before the correct approach to the solution of plane problems was
clarified (1945-9). In 1923 Nadai investigated, both theoretically and
experimentally, the plastic zones in a twisted prismatic bar of arbitrary
contour. The effective application of plastic theory to technological
processes began in 1925 when von Karman analysed, by an elementary
method, the state of stress in rolling. In the following year Siebel, and
soon afterwards Sachs, put forward similar theories for wire-drawing.
It was not until 1926, when Lode measured the deformation of tubes
of various metals under combined tension and internal pressure, that the
Lévy-Mises stress-strain relations were shown to be valid to a first
approximation. However, Lode’s results indicated certain divergences,
and these were afterwards confirmed by the more controlled experi-
ments of Taylor and Quinney (1931). The theory was now generalized
in two important directions: first by Reuss (1930) who made allowance
for the elastic component of strain, following an earlier suggestion by
Prandtl; second by Schmidt (1932) and Odquist (1933) who showed, in
slightly different ways, how work-hardening could be brought within
the framework of the Lévy-Mises equations. The first generalization
was broadly confirmed by experiments of Hohenemser (1931-2), and
the second by investigations of Schmidt. Thus, by 1932, a theory had
been constructed, reproducing the main plastic and elastic properties
of an isotropic metal at ordinary temperatures, and substantially in
accord with observation. However, from then until the early 1940’s
little progress was made in the solution of special problems. Further
generalizations were formulated (for example, by von Mises in 1928 and
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by Melan in 1938), but mathematical expediency and lack of accurate
data combined to render them, for the time being, academic.

Meanwhile a rival theory proposed by Hencky in 1924 was favoured
for its analytic convenience in problems where the plastic strain was
small, despite its conflict with experience in establishing a one-one rela-
tion between stress and strain. This theory was given prominence by
Nadai in his book on plasticity (1931), and was afterwards extensively
employed by the Russian school (1935 onwards). Hencky’s equations
lead to approximately correct results only for certain loading-paths, but
many writers have applied them without discrimination.

The war stimulated research in England and America, through prob-
lems such as the calculation of the stresses in autofrettaged gun-barrels
and of the forces resisting a shot penetrating armour plate. Since then
the subject has been intensively studied in many countries, and the
advances made are such that the present book is largely an account of
the work of the five years 1945-9.

3. Physical background

During the construction of the theory frequent reference is made to
the plastic properties of metal single crystals and polycrystalline aggre-
gates. Itisassumed that the reader has a general knowledge of these, and
only a brief résumé of the relevant properties is given here. For broader
and more detailed accounts, presented from other standpoints, specialist
works on metal physics should be consulted.}

(i) Single crystals. In a freshly grown metal crystal, isolated from
external disturbances and of the highest purity, the atoms are disposed
in equilibrium under their mutual forces in a regular three-dimensional
array, with a periodic structure characteristic of the metal. Most of the
well-known metals have a lattice structure which is either face-centred
cubic (copper, aluminium, lead, silver, gold), body-centred cubic (alpha
iron, vanadium, tungsten, and the alkali metals), or hexagonal close-
packed (zinc, magnesium, cadmium). According to current theory, the
cohesive forces binding the atoms together are such that a perfect metal
crystal could sustain, with only slight displacements of the atoms from
their normal positions, very much greater applied stresses than an actual

t C. S. Barrett, Structure of Metals (McGraw-Hill Book Co., 1943); W. Boas, An
Introduction to the Physics of Metals and Alloys (John Wiley & Sons, Inc., New York,
1947); A. H. Cottrell, Theoretical Structural Metallurgy (Edward Arnold & Co., London,
1948); C. F. Elam, Distortion of Metal Crystals (Clarendon Press, Oxford, 1935); W. Hume-
Rothery, Atomic Theory for Students of Metallurgy (Institute of Metals, London, 1946);
E. Schmid and W. Boas, Kristallplastizitit (Julius Springer, Berlin, 1935); F. Seitz, The
Physics of Metals (McGraw-Hill Book Co., 1943).
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crystal is observed to do. Thus, in a freshly prepared crystal, sensitive
measurements show that elastic (or reversible) deformation has ceased
after a macroscopic shear strain of order 104, whereas a perfect crystal
should be capable of an elastic shear strain of order 10-1. The discrepancy
is attributed to faults or disturbances in the lattice structure, formed
during growth or introduced by subsequent handling. It is thought
that the faults are separated by distances of the order of 1,000 atomic
spacings, and that each extends over a volume containing perhaps
100-1,000 atoms. Certain of the faults are considered to be of a kind that
‘weaken’ the crystal, and are known as ‘dislocations’. Mathematical
studies of conjectural atomic arrangements in a dislocation indicate
that a very small applied stress would cause it to move (as a geometrical
entity) through an otherwise perfect crystal. The resultant effect of the
passage of a dislocation is a relative displacement of the parts of the
crystal bordering its path by an amount equal to one or two atomic
spacings. In this way the movement through the crystal of many dis-
locations produces an overall strain without affecting the main lattice
structure; the substantial preservation of the structure during plastic
deformation is confirmed by X-ray examination. That the strain
is plastic and irreversible is attributed to the ‘trapping’ of the dis-
locations at other faults which are not mobile under the external stresses.
Additional dislocations are thought to be created or liberated during the
deformation, but despite this a continually increasing stress is usually
needed to enforce plastic strain (strain-hardening); the movement of
free dislocations is progressively impeded by the local disordering of the
lattice at points where trapped dislocations accumulate. The increase
in potential energy of the deformed crystal is only a small fraction (of
order one-tenth) of the work done by the applied stress; the remainder
appears as vibrational energy of the atoms in or near moving dislocations
(whose speed must be close to that of sound) and is ultimately dissipated
as heat throughout the crystal.

If the external temperature is sufficiently great, the activation energy
needed to move existing dislocations may also be provided by thermal
agitation; the effect of the applied stress is mainly to give direction to the
resultant flow (transient creep). If the stress is removed, and the crystal
is held at a sufficiently high temperature for a certain period, thermal
fluctuations assist the atoms over their potential barriers towards the
original regular array, which is the configuration of greatest stability.
Ultimately the imperfections created during the previous deformation

are removed, and the crystal is said to have been ‘annealed’.
3837.16 B
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In the theory of plasticity the strain is regarded as macroscopically
uniform, but on a microscopic scale it is known that the plastic dis-
tortion is largely confined to narrow bands (slip-lines) which extend
through the crystal and are presumably created by the passage, along
closely grouped planes, of large numbers of dislocations, many of which
become trapped or mutually locked. These bands are perhaps some
100 atoms thick, and the planes to which they are parallel are known as
slip-, or glide-, planes: they are often the crystallographic planes most
densely packed with atoms. The average spacing of the slip-bands
depends on the amount and rate of strain, and on the metal, but is
normally of the order of 10,000 atomic distances. The lattice between
the slip-bands is still virtually perfect and only distorted elastically; the
strain there is greater than the overall strain at the elastic limit since
the applied stress has increased because of the hardening; moreover,
since the slip-bands extend over only a small proportion of the total
volume, even after quite large strains, the elastic moduli of the crystal
as a whole are little affected by the plastic deformation.

When a crystal in the form of a wire is stretched under tension the
cross-section becomes elliptical. Macroscopically, the deformation may
be described by saying that the crystal has undergone a shear in a certain
direction over a certain set of parallel slip-planes, together with a rotation
bringing these planes more ncarly parallel to the axis of the wire. Only
a limited number of active slip-directions have ever been observed. In
face-centred cubic metals at ordinary temperatures there are apparently
only four possible slip-planes (the octahedral planes), in each of which
there are three possible slip-directions (lying in the cubic planes); slip
occurs in a body-centred cubic metal in many more ways, but in a hexa-
gonal metal only over the basal planes and along the digonal axes.
The tension needed to deform the wire plastically varies greatly with the
orientation of the crystal to the axis, but it is found that a slip-direction
isactivated only when a certain critical value (the yield stress) is attained
by the component of shear stress acting over the slip-plane and in the
slip-direction; this is of order 100 gm./mm.2? in an annealed crystal at
ordinary temperatures. The yield stress is approximately the same for
all the different slip-directions in a crystal in a given state, and is inde-
pendent of the type of test (for example, whether tension or compression).
For ordinary strain-rates and for temperatures where creep is negligible,
the yield stress is a function mainly of the amount of previous plastic
distortion. In particular. the same relationship is obtained between
shear stress and shear strain irrespective of which set of slip-planes is
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operating, and, if the applied stress is subsequently changed so that
another set of planes is operated, the new shear-hardening curve is a
continuation of the previous one. It appears, therefore, that the dis-
ordering of the lattice affects all planes equally whether or not they are
active; this phenomenon is known as latent hardening. When a gradually
increasing stress is applied to a crystal (either in its original state or
plastically deformed), it is observed that the active slip-planes are those
on which the critical value of the shear stress is first attained. Double
slip begins when the rotation of the crystal brings another set of planes
into the position where the corresponding shear stress is equal to the
current yield value; several sets can be operated simultaneously under
combined stresses.

(ii) Polycrystalline aggregate. A metal, in its generally used form, is a
compact aggregate of crystal grains with varying shapes and orienta-
tions, each grain having grown from a separate nucleus in the melt. The
metal may be considered macroscopically isotropic when the orientations
are randomly distributed and when the average dimensions of the indi-
vidual crystals are small compared with the dimensions of the whole
specimen (for example, 10-*-10-2 c¢cm. compared with 1-100 cm.).
Nevertheless, the properties of an aggregate are not always simply
statistical averages of the properties of a single crystal, taken over all
orientations. While this is approximately true of properties which
depend mainly on the bulk structure, such as the coefficient of thermal
expansion or the elastic moduli, it is not necessarily true of plastic
phenomena.

Theory and experiment suggest that the transition from one orienta-
tion to another in neighbouring grains takes place through a layer only a
few atoms thick. In this transition zone, or grain boundary, the atoms
take up equilibrium positions which are a compromise between the
normal positions in each of the two lattices. These atoms have a higher
free energy than atoms within the grains, and are consequently main
agents of viscous flow and intercrystalline fracture at high temperatures.
They are also thought to be potential sources of dislocations, but at the
same time hindrances to the passage of others, in greater or lesser degree.
Being the centre of a stress concentration extending over many atoms, a
dislocation arriving at a boundary can activate slip on a skew plane ina
neighbouring crystal, and this should be easier when many slip-planes
of near orientation are available, as in face-centred or body-centred
cubic metals. Indeed, the shear-hardening curve of a polycrystalline
cubic metal does not exceed the mean curve for single crystals of arbitrary



