9[\1‘?ﬁjfﬂﬂ¥ﬁﬁ§§ﬂ

ﬁ%ﬁﬁﬁﬁﬁnﬁ

or 10]’
ﬁ) | ﬂ“ ‘
CEESEET
Analysis i C++
numimn«mmunn .
MK mvnmnrd Edlﬂﬂﬂ
l'ly' ST T 0%

Data RALTE. ... LA, L
Structures s ORI £ R O £ A [l % T B T e T L

& — R AR mmmmﬁﬂe.m‘

Algorithm
Analysis in

-

Clford A Shaffer j Clifford A. Shaffer

& T 724 & paAL

PUBLISHING HOUSE OF ELECTRONICS INDUSTRY http://www.phei.com.cn

TP311. 12/Y16
1 Y1 | 2013.

HIEEWEE XS
| (C++R) (E=HR)
(ZE3THR)

Data Structures and Algorithm Analysis in C++

ESMTENREH R

Third Edition

[£] Clifford A. Shaffer %

k@

wiin

TF IF & s AL
Publishing House of Electronics Industry
dtX - BEJING

mEE T

AR AT S B E AN E RN R C++ 55 R AR BRGNS HHE SR 4 B M A AR
AHMAGE—E, RENA T EFHRBOBARSHWRHIT . RROSM Tk, fE5 IR 08—
G R RITF BT 15 B KRB AT AT LU . FP BB AT — 2 LU R B 45 40 45 S) B 2 AW
AR, FNET A — B, BrRAE T C++ SH MRS I B, T E R
W AR YEY PG AT T BRARSCAAD . SRR A B4 T BERL

ABEGEN KL BRI BN & SH RV AL W FENBM MBS E S, WESTHEN TRER
ANRZ%,

ISBN13: 978-0-486-48582-9

ISBN10: 0-486-48582-X

Data Structures and Algorithm Analysis in C ++, Third Edition
Copyright (©) 2011 by Clifford A. Shaffer

All right reserved.

Dover H fRAE B H IR A9 3X N RS B BB F 2011 4E, Xt A Practical Introduction to Data Structures and Algorithm
Analysis (1955 1 B\ A 2 R hutp:// people.covtedu/~ shaffer/ Book/ T 48) 37 1K 1715 B 1 s 6 Uk B 46
B AR

B 5 & RBIES EF: 01-2012-7754

B H7E/R4% B (CIP) 47

BARGH SEBHT: C++BR: 48 3 B = Data Structures and Algorithm Analysis in C++; #3C/(3%) 35 (Shaffer,
C.A)ZFE. —dbE: F Tk ARAE:, 2013.1

EAMTEVEEEM 75

ISBN 978-7-121-19260-9

L ¥ I O L OBIRLEH-HEXR-HI - QBEMT B SSK-HM -2 OCEE-
R B - RS R-Sb-3E3C V. DTP311. 12 @TP312

o A B 5 4R CIP $ii 57 (2012) 45 302702 5

RgE: & K
RIEG#: & K
By Rl KON TSR ED R
¥ I BONTTREEEDRI
HARAAT: BT Toll At
A TIMGEIE X T AR B 173 {540 % 100036
A 787 x1092 1716 ENK: 38.25 E¥: 1273 FF
Bl WK 2013 4F 1 5 1 YREDKI
E #r: 69.00 JT

JUBTW 3K v Tl R P B R R, 31 W 3K 5 6 e, 25 B IE B8 0k, W 5 A RITIHBLR, B
RXHRMGHEIE: (010)88254888,

B BVRIE ZHR 4 2 Zlts@phei.com.cn, ¥ RBAEEIRIE R IR E dbqq@phei.com.cn,

RS- #4% . (010)88258888

Preface

We study data structures so that we can learn to write more efficient programs.
But why must programs be efficient when new computers are faster every year?
The reason is that our ambitions grow with our capabilities. Instead of rendering
efficiency needs obsolete, the modern revolution in computing power and storage
capability merely raises the efficiency stakes as we attempt more complex tasks.

The quest for program efficiency need not and should not conflict with sound
design and clear coding. Creating efficient programs has little to do with “program-
ming tricks” but rather is based on good organization of information and good al-
gorithms. A programmer who has not mastered the basic principles of clear design
is not likely to write efficient programs. Conversely, concerns related to develop-
ment costs and maintainability should not be used as an excuse to justify inefficient
performance. Generality in design can and should be achieved without sacrificing
performance, but this can only be done if the designer understands how to measure
performance and does so as an integral part of the design and implementation pro-
cess. Most computer science curricula recognize that good programming skills be-
gin with a strong emphasis on fundamental software engineering principles. Then,
once a programmer has learned the principles of clear program design and imple-
mentation, the next step is to study the effects of data organization and algorithms
on program efficiency.

Approach: This book describes many techniques for representing data. These
techniques are presented within the context of the following principles:

1. Each data structure and each algorithm has costs and benefits. Practitioners
need a thorough understanding of how to assess costs and benefits to be able
to adapt to new design challenges. This requires an understanding of the
principles of algorithm analysis, and also an appreciation for the significant
effects of the physical medium employed (e.g., data stored on disk versus
main memory).

2. Related to costs and benefits is the notion of tradeoffs. For example, it is quite
common to reduce time requirements at the expense of an increase in space
requirements, or vice versa. Programmers face tradeoff issues regularly in all

« 3.

phases of software design and implementation, so the concept must become
deeply ingrained.

3. Programmers should know enough about common practice to avoid rein-
venting the wheel. Thus, programmers need to learn the commonly used
data structures, their related algorithms, and the most frequently encountered
design patterns found in programming.

4. Data structures follow needs. Programmers must learn to assess application
needs first, then find a data structure with matching capabilities. To do this
requires competence in Principles 1, 2, and 3.

As I have taught data structures through the years, I have found that design
issues have played an ever greater role in my courses. This can be traced through
the various editions of this textbook by the increasing coverage for design patterns
and generic interfaces. The first edition had no mention of design patterns. The
second edition had limited coverage of a few example patterns, and introduced the
dictionary ADT and comparator classes. With the third edition, there is explicit
coverage of some design patterns that are encountered when programming the basic
data structures and algorithms covered in the book.

Using the Book in Class: Data structures and algorithms textbooks tend to fall
into one of two categories: teaching texts or encyclopedias. Books that attempt to
do both usually fail at both. This book is intended as a teaching text. I believe it is
more important for a practitioner to understand the principles required to select or
design the data structure that will best solve some problem than it is to memorize a
lot of textbook implementations. Hence, I have designed this as a teaching text that
covers most standard data structures, but not all. A few data structures that are not
widely adopted are included to illustrate important principles. Some relatively new
data structures that should become widely used in the future are included.

Within an undergraduate program, this textbook is designed for use in either an
advanced lower division (sophomore or junior level) data structures course, or for
a senior level algorithms course. New material has been added in the third edition
to support its use in an algorithms course. Normally, this text would be used in a
course beyond the standard freshman level “CS2” course that often serves as the
initial introduction to data structures. Readers of this book should typically have
two semesters of the equivalent of programming experience, including at least some
exposure to C++. Readers who are already familiar with recursion will have an
advantage. Students of data structures will also benefit from having first completed
a good course in Discrete Mathematics. Nonetheless, Chapter 2 attempts to give
a reasonably complete survey of the prerequisite mathematical topics at the level
necessary to understand their use in this book. Readers may wish to refer back
to the appropriate sections as needed when encountering unfamiliar mathematical
material.

A sophomore-level class where students have only a little background in basic
data structures or analysis (that is, background equivalent to what would be had
from a traditional CS2 course) might cover Chapters 1-11 in detail, as well as se-
lected topics from Chapter 13. That is how I use the book for my own sophomore-
level class. Students with greater background might cover Chapter 1, skip most
of Chapter 2 except for reference, briefly cover Chapters 3 and 4, and then cover
chapters 5-12 in detail. Again, only certain topics from Chapter 13 might be cov-
ered, depending on the programming assignments selected by the instructor. A
senior-level algorithms course would focus on Chapters 11 and 14-17.

Chapter 13 is intended in part as a source for larger programming exercises.
I recommend that all students taking a data structures course be required to im-
plement some advanced tree structure, or another dynamic structure of comparable
difficulty such as the skip list or sparse matrix representations of Chapter 12. None
of these data structures are significantly more difficult to implement than the binary
search tree, and any of them should be within a student’s ability after completing
Chapter 5.

While I have attempted to arrange the presentation in an order that makes sense,
instructors should feel free to rearrange the topics as they see fit. The book has been
written so that once the reader has mastered Chapters 1-6, the remaining material
has relatively few dependencies. Clearly, external sorting depends on understand-
ing internal sorting and disk files. Section 6.2 on the UNION/FIND algorithm is
used in Kruskal’s Minimum-Cost Spanning Tree algorithm. Section 9.2 on self-
organizing lists mentions the buffer replacement schemes covered in Section 8.3.
Chapter 14 draws on examples from throughout the book. Section 17.2 relies on
knowledge of graphs. Otherwise, most topics depend only on material presented
earlier within the same chapter.

Most chapters end with a section entitled “Further Reading.” These sections
are not comprehensive lists of references on the topics presented. Rather, I include
books and articles that, in my opinion, may prove exceptionally informative or
entertaining to the reader. In some cases I include references to works that should
become familiar to any well-rounded computer scientist.

Use of C++: The programming examples are written in C++, but I do not wish to
discourage those unfamiliar with C++ from reading this book. I have attempted to
make the examples as clear as possible while maintaining the advantages of C++.
C++ is used here strictly as a tool to illustrate data structures concepts. In particu-
lar, I make use of C++’s support for hiding implementation details, including fea-
tures such as classes, private class members, constructors, and destructors. These
features of the language support the crucial concept of separating logical design, as
embodied in the abstract data type, from physical implementation as embodied in
the data structure.

To keep the presentation as clear as possible, some important features of C++
are avoided here. 1 deliberately minimize use of certain features commonly used
by experienced C++ programmers such as class hierarchy, inheritance, and virtual
functions. Operator and function overloading is used sparingly. C-like initialization
syntax is preferred to some of the alternatives offered by C++.

While the C++ features mentioned above have valid design rationale in real
programs, they tend to obscure rather than enlighten the principles espoused in
this book. For example, inheritance is an important tool that helps programmers
avoid duplication, and thus minimize bugs. From a pedagogical standpoint, how-
ever, inheritance often makes code examples harder to understand since it tends to
spread the description for one logical unit among several classes. Thus, my class
definitions only use inheritance where inheritance is explicitly relevant to the point
illustrated (e.g., Section 5.3.1). This does not mean that a programmer should do
likewise. Avoiding code duplication and minimizing errors are important goals.
Treat the programming examples as illustrations of data structure principles, but do
not copy them directly into your own programs.

One painful decision I had to make was whether to use templates in the code
examples. In the first edition of this book, the decision was to leave templates out
as it was felt that their syntax obscures the meaning of the code for those not famil-
iar with C++. In the years following, the use of C++ in computer science curricula
has greatly expanded. I now assume that readers of the text will be familiar with
template syntax. Thus, templates are now used extensively in the code examples.

My implementations are meant to provide concrete illustrations of data struc-
ture principles, as an aid to the textual exposition. Code examples should not be
read or used in isolation from the associated text because the bulk of each exam-
ple’s documentation is contained in the text, not the code. The code complements
the text, not the other way around. They are not meant to be a series of commercial-
quality class implementations. If you are looking for a complete implementation
of a standard data structure for use in your own code, you would do well to do an
Internet search.

For instance, the code examples provide less parameter checking than is sound
programming practice, since including such checking would obscure rather than il-
luminate the text. Some parameter checking and testing for other constraints (e.g.,
whether a value is being removed from an empty container) is included in the form
of a call to Assert. The inputs to Assert are a Boolean expression and a charac-
ter string. If this expression evaluates to false, then a message is printed and the
program terminates immediately. Terminating a program when a function receives
a bad parameter is generally considered undesirable in real programs, but is quite
adequate for understanding how a data structure is meant to operate. In real pro-
gramming applications, C++’s exception handling features should be used to deal
with input data errors. However, assertions provide a simpler mechanism for indi-

cating required conditions in a way that is both adequate for clarifying how a data
structure is meant to operate, and is easily modified into true exception handling.
See the Appendix for the implementation of Assert.

I make a distinction in the text between “C++ implementations” and “pseu-
docode.” Code labeled as a C++ implementation has actually been compiled and
tested on one or more C++ compilers. Pseudocode examples often conform closely
to C++ syntax, but typically contain one or more lines of higher-level description.
Pseudocode is used where I perceived a greater pedagogical advantage to a simpler,
but less precise, description.

Exercises and Projects: Proper implementation and analysis of data structures
cannot be learned simply by reading a book. You must practice by implementing
real programs, constantly comparing different techniques to see what really works
best in a given situation.

One of the most important aspects of a course in data structures is that it is
where students really learn to program using pointers and dynamic memory al-
location, by implementing data structures such as linked lists and trees. It is often
where students truly learn recursion. In our curriculum, this is the first course where
students do significant design, because it often requires real data structures to mo-
tivate significant design exercises. Finally, the fundamental differences between
memory-based and disk-based data access cannot be appreciated without practical
programming experience. For all of these reasons, a data structures course cannot
succeed without a significant programming component. In our department, the data
structures course is one of the most difficult programming course in the curriculum.

Students should also work problems to develop their analytical abilities. I pro-
vide over 450 exercises and suggestions for programming projects. I urge readers
to take advantage of them.

Contacting the Author and Supplementary Materials: A book such as this
is sure to contain errors and have room for improvement. I welcome bug reports
and constructive criticism. I can be reached by electronic mail via the Internet at
shaffer@vt . edu. Alternatively, comments can be mailed to

Cliff Shaffer
Department of Computer Science
Virginia Tech
Blacksburg, VA 24061
The electronic posting of this book, along with a set of lecture notes for use in
class can be obtained at®

http://www.cs.vt .edu/~shaffer/book.html.

O ABEREEET 201248 11 A 19 HEFHHBIRZHTTEE, —HEE

The code examples used in the book are available at the same site. Online Wet
pages for Virginia Tech’s sophomore-level data structures class can be found at

http://courses.cs.vt.edu/~cs3114.

This book was typeset by the author using I&TgX. The bibliography was pre-
pared using BIBTEX. The index was prepared using makeindex. The figures were
mostly drawn with X£fig. Figures 3.1 and 9.10 were partially created using Math-
ematica.

Acknowledgments: It takes a lot of help from a lot of people to make a book.
I wish to acknowledge a few of those who helped to make this book possible. I
apologize for the inevitable omissions.

Virginia Tech helped make this whole thing possible through sabbatical re-
search leave during Fall 1994, enabling me to get the project off the ground. My de-
partment heads during the time I have written the various editions of this book, Den-
nis Kafura and Jack Carroll, provided unwavering moral support for this project.
Mike Keenan, Lenny Heath, and Jeff Shaffer provided valuable input on early ver-
sions of the chapters. I also wish to thank Lenny Heath for many years of stimulat-
ing discussions about algorithms and analysis (and how to teach both to students).
Steve Edwards deserves special thanks for spending so much time helping me on
various redesigns of the C++ and Java code versions for the second and third edi-
tions, and many hours of discussion on the principles of program design. Thanks
to Layne Watson for his help with Mathematica, and to Bo Begole, Philip Isenhour,
Jeff Nielsen, and Craig Struble for much technical assistance. Thanks to Bill Mc-
Quain, Mark Abrams and Dennis Kafura for answering lots of silly questions about
C++ and Java.

I am truly indebted to the many reviewers of the various editions of this manu-
script. For the first edition these reviewers included J. David Bezek (University of
Evansville), Douglas Campbell (Brigham Young University), Karen Davis (Univer-
sity of Cincinnati), Vijay Kumar Garg (University of Texas — Austin), Jim Miller
(University of Kansas), Bruce Maxim (University of Michigan — Dearborn), Jeff
Parker (Agile Networks/Harvard), Dana Richards (George Mason University), Jack
Tan (University of Houston), and Lixin Tao (Concordia University). Without their
help, this book would contain many more technical errors and many fewer insights.

For the second edition, I wish to thank these reviewers: Gurdip Singh (Kansas
State University), Peter Allen (Columbia University), Robin Hill (University of
Wyoming), Norman Jacobson (University of California — Irvine), Ben Keller (East-
ern Michigan University), and Ken Bosworth (Idaho State University). In addition,
I wish to thank Neil Stewart and Frank J. Thesen for their comments and ideas for
improvement.

Third edition reviewers included Randall Lechlitner (University of Houstin,
Clear Lake) and Brian C. Hipp (York Technical College). I thank them for their
comments.

Prentice Hall was the original print publisher for the first and second editions.
Without the hard work of many people there, none of this would be possible. Au-
thors simply do not create printer-ready books on their own. Foremost thanks go to
Kate Hargett, Petra Rector, Laura Steele, and Alan Apt, my editors over the years.
My production editors, Irwin Zucker for the second edition, Kathleen Caren for
the original C++ version, and Ed DeFelippis for the Java version, kept everything
moving smoothly during that horrible rush at the end. Thanks to Bill Zobrist and
Bruce Gregory (I think) for getting me into this in the first place. Others at Prentice
Hall who helped me along the way include Truly Donovan, Linda Behrens, and
Phyllis Bregman. Thanks to Tracy Dunkelberger for her help in returning the copy-
right to me, thus enabling the electronic future of this work. I am sure I owe thanks
to many others at Prentice Hall for their help in ways that I am not even aware of.

I am thankful to Shelley Kronzek at Dover publications for her faith in taking
on the print publication of this third edition. Much expanded, with both Java and
C++ versions, and many inconsistencies corrected, I am confident that this is the
best edition yet. But none of us really knows whether students will prefer a free
online textbook or a low-cost, printed bound version. In the end, we believe that
the two formats will be mutually supporting by offering more choices. Production
editor James Miller and design manager Marie Zaczkiewicz have worked hard to
ensure that the production is of the highest quality.

I wish to express my appreciation to Hanan Samet for teaching me about data
structures. I learned much of the philosophy presented here from him as well,
though he is not responsible for any problems with the result. Thanks to my wife
Terry, for her love and support, and to my daughters Irena and Kate for pleasant
diversions from working too hard. Finally, and most importantly, to all of the data
structures students over the years who have taught me what is important and what
should be skipped in a data structures course, and the many new insights they have
provided. This book is dedicated to them.

Cliff Shaffer
Blacksburg, Virginia

Contents

I Preliminaries
1 Data Structures and Algorithms

1.1

12
1.3

1.4
1.5
1.6

A Philosophy of Data Structures
1.1.1 The Need for Data Structures
1.1.2 Costs and Benefits

Abstract Data Types and Data Structures
Design Patterns

1.3.1 Flyweight

1.3.2 Visitor

1.3.3 Composite

1.3.4 Strategy

Problems, Algorithms, and Programs
Further Reading

Exercises

2 Mathematical Preliminaries

2.1
2.2
2.3
24
2.5
2.6

Sets and Relations
Miscellaneous Notation
Logarithms
Summations and Recurrences
Recursion
Mathematical Proof Techniques
2.6.1 Direct Proof
2.6.2 Proof by Contradiction

0 AN b B W=

12
13
13
14
15
16
18
20

25
25
29
31
32
36
38
39
39

<11 -

«12 -

hal =

2.7
2.8
29

2.6.3 Proof by Mathematical Induction
Estimation

Further Reading

Exercises

Algorithm Analysis

3.1
32
33
34

35
3.6
3.7
3.8
3.9
3.10
3.11
312
313
3.14

Introduction

Best, Worst, and Average Cases

A Faster Computer, or a Faster Algorithm?
Asymptotic Analysis

34.1 Upper Bounds

342 Lower Bounds

34.3 O Notation

3.4.4 Simplifying Rules

3.4.5 Classifying Functions
Calculating the Running Time for a Program
Analyzing Problems

Common Misunderstandings

Multiple Parameters

Space Bounds

Speeding Up Your Programs

Empirical Analysis

Further Reading

Exercises

Projects

Fundamental Data Structures
Lists, Stacks, and Queues

4.1

Lists

4.1.1 Array-Based List Implementation
4.1.2 Linked Lists

4.1.3 Comparison of List Implementations
4.1.4 Element Implementations

4.1.5 Doubly Linked Lists

40
46
47
48

55
55
61
62
65
65
67
68
69
70
71
76
77
79
80
82
85
86
86
90

93
95

96
100
103
112
114
115

42

43

4.4
45
4.6
4.7

Stacks

4.2.1 Array-Based Stacks

4.2.2 Linked Stacks

4.2.3 Comparison of Array-Based and Linked Stacks
424 Implementing Recursion

Queues

4.3.1 Array-Based Queues

43.2 Linked Queues

4.3.3 Comparison of Array-Based and Linked Queues
Dictionaries

Further Reading

Exercises

Projects

Binary Trees

o |

52
5.3

54
5:5

5.6

5.7
5.8
59

Definitions and Properties

5.1.1 The Full Binary Tree Theorem

5.1.2 A Binary Tree Node ADT

Binary Tree Traversals

Binary Tree Node Implementations

5.3.1 Pointer-Based Node Implementations
5.3.2 Space Requirements

5.3.3 Array Implementation for Complete Binary Trees
Binary Search Trees

Heaps and Priority Queues

Huffman Coding Trees

5.6.1 Building Huffman Coding Trees
5.6.2 Assigning and Using Huffman Codes
5.6.3 Search in Huffman Trees

Further Reading

Exercises

Projects

Non-Binary Trees

6.1

General Tree Definitions and Terminology
6.1.1 An ADT for General Tree Nodes

120
121
124
125
125
129
129
134
134
134
145
145
149

151
151
153
155
155
160
160
166
168
168
178
185
186
192
195
196
196
200

203

203
204

<13 -

- 14 -

6.2
6.3

6.4
6.5
6.6
6.7
6.8

6.1.2 General Tree Traversals
The Parent Pointer Implementation
General Tree Implementations
6.3.1 List of Children

6.3.2 The Left-Child/Right-Sibling Implementation

6.3.3 Dynamic Node Implementations

6.3.4 Dynamic “Left-Child/Right-Sibling” Implementation

K -ary Trees

Sequential Tree Implementations
Further Reading

Exercises

Projects

IIT Sorting and Searching
7 Internal Sorting

71
12

7.3
7.4
7.5
7.6
94
78
79

Sorting Terminology and Notation
Three ©(n?) Sorting Algorithms
7.2.1 Insertion Sort

7.2.2 Bubble Sort

7.2.3 Selection Sort

7.2.4 The Cost of Exchange Sorting
Shellsort

Mergesort

Quicksort

Heapsort

Binsort and Radix Sort

An Empirical Comparison of Sorting Algorithms
Lower Bounds for Sorting

7.10 Further Reading
7.11 Exercises
7.12 Projects

8.1

File Processing and External Sorting

Primary versus Secondary Storage

205
207
213
214
215
215
218
218
219
223
223
226

229
231
232
233
233
235
237
238
239
241
244
251
252
259
261
265
265
269

273
273

10

8.2

8.3
8.4
8.5

8.6
8.7
8.8

Disk Drives

8.2.1 Disk Drive Architecture
8.2.2 Disk Access Costs
Buffers and Buffer Pools

The Programmer’s View of Files
External Sorting

8.5.1 Simple Approaches to External Sorting
8.5.2 Replacement Selection
8.5.3 Multiway Merging
Further Reading

Exercises

Projects

Searching

9.1
9.2
9.3
9.4

9.5
9.6
9.7

Searching Unsorted and Sorted Arrays
Self-Organizing Lists

Bit Vectors for Representing Sets
Hashing

9.4.1 Hash Functions

9.4.2 Open Hashing

9.4.3 Closed Hashing

9.4.4 Analysis of Closed Hashing
9.4.5 Deletion

Further Reading

Exercises

Projects

Indexing

10.1
10.2
10.3
10.4
10.5

10.6

Linear Indexing

ISAM

Tree-based Indexing

2-3 Trees

B-Trees

10.5.1 B*-Trees

10.5.2 B-Tree Analysis

Further Reading

276
276
280
282
290
291
294
296
300
303
304
307

311
312
317
323
324
325
330
331
339
344
345
345
348

351
353
356
358
360
364

368
374

375

.15.

<16 -

v

12

10.7
10.8

Exercises
Projects

Advanced Data Structures
11 Graphs

11.1
11.2
11.3

11.4

11.5

11.6

11.7
11.8

Terminology and Representations
Graph Implementations

Graph Traversals

11.3.1 Depth-First Search
11.3.2 Breadth-First Search
11.3.3 Topological Sort
Shortest-Paths Problems

11.4.1 Single-Source Shortest Paths
Minimum-Cost Spanning Trees
11.5.1 Prim’s Algorithm

11.5.2 Kiruskal’s Algorithm
Further Reading

Exercises

Projects

Lists and Arrays Revisited

12.1
12:2
12.3

12.4
12.5
12.6

Multilists

Matrix Representations

Memory Management

12.3.1 Dynamic Storage Allocation

12.3.2 Failure Policies and Garbage Collection

Further Reading
Exercises
Projects

13 Advanced Tree Structures
13.1 Tries
13.2 Balanced Trees

13.2.1 The AVL Tree
13.2.2 The Splay Tree

375
377

379
381

382
386
390
393
394
394
399
400
402
404
407
409
409
411

413
413
416
420
422
429
433
434
435

437
437
442
443
445

13.3 Spatial Data Structures
13.3.1 The K-D Tree
13.3.2 The PR quadtree
13.3.3 Other Point Data Structures
13.3.4 Other Spatial Data Structures
13.4 Further Reading
13.5 Exercises
13.6 Projects

V -Theory of Algorithms
14 Analysis Techniques
14.1 Summation Techniques
14.2 Recurrence Relations

14.2.1 Estimating Upper and Lower Bounds

14.2.2 Expanding Recurrences

14.2.3 Divide and Conquer Recurrences
14.2.4 Average-Case Analysis of Quicksort

14.3 Amortized Analysis
14.4 Further Reading
14.5 Exercises

14.6 Projects

15 Lower Bounds

15.1 Introduction to Lower Bounds Proofs

15.2 Lower Bounds on Searching Lists
15.2.1 Searching in Unsorted Lists
15.2.2 Searching in Sorted Lists

15.3 Finding the Maximum Value

15.4 Adversarial Lower Bounds Proofs

15.5 State Space Lower Bounds Proofs

15.6 Finding the ith Best Element

15.7 Optimal Sorting

15.8 Further Reading

15.9 Exercises

15.10Projects

448
450
455
459
461
461
462
463

467
469
470
475
475
478
480
482
484
487
487
491

493
494
496
496
498
499
501
504
507
509
512
512
515

.17.

