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Preface

We study data structures so that we can learn to write more efficient programs.
But why must programs be efficient when new computers are faster every year?
The reason is that our ambitions grow with our capabilities. Instead of rendering
efficiency needs obsolete, the modern revolution in computing power and storage
capability merely raises the efficiency stakes as we attempt more complex tasks.

The quest for program efficiency need not and should not conflict with sound
design and clear coding. Creating efficient programs has little to do with “program-
ming tricks” but rather is based on good organization of information and good al-
gorithms. A programmer who has not mastered the basic principles of clear design
is not likely to write efficient programs. Conversely, concerns related to develop-
ment costs and maintainability should not be used as an excuse to justify inefficient
performance. Generality in design can and should be achieved without sacrificing
performance, but this can only be done if the designer understands how to measure
performance and does so as an integral part of the design and implementation pro-
cess. Most computer science curricula recognize that good programming skills be-
gin with a strong emphasis on fundamental software engineering principles. Then,
once a programmer has learned the principles of clear program design and imple-
mentation, the next step is to study the effects of data organization and algorithms
on program efficiency.

Approach: This book describes many techniques for representing data. These
techniques are presented within the context of the following principles:

1. Each data structure and each algorithm has costs and benefits. Practitioners
need a thorough understanding of how to assess costs and benefits to be able
to adapt to new design challenges. This requires an understanding of the
principles of algorithm analysis, and also an appreciation for the significant
effects of the physical medium employed (e.g., data stored on disk versus
main memory).

2. Related to costs and benefits is the notion of tradeoffs. For example, it is quite
common to reduce time requirements at the expense of an increase in space
requirements, or vice versa. Programmers face tradeoff issues regularly in all
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phases of software design and implementation, so the concept must become
deeply ingrained.

3. Programmers should know enough about common practice to avoid rein-
venting the wheel. Thus, programmers need to learn the commonly used
data structures, their related algorithms, and the most frequently encountered
design patterns found in programming.

4. Data structures follow needs. Programmers must learn to assess application
needs first, then find a data structure with matching capabilities. To do this
requires competence in Principles 1, 2, and 3.

As I have taught data structures through the years, I have found that design
issues have played an ever greater role in my courses. This can be traced through
the various editions of this textbook by the increasing coverage for design patterns
and generic interfaces. The first edition had no mention of design patterns. The
second edition had limited coverage of a few example patterns, and introduced the
dictionary ADT and comparator classes. With the third edition, there is explicit
coverage of some design patterns that are encountered when programming the basic
data structures and algorithms covered in the book.

Using the Book in Class: Data structures and algorithms textbooks tend to fall
into one of two categories: teaching texts or encyclopedias. Books that attempt to
do both usually fail at both. This book is intended as a teaching text. I believe it is
more important for a practitioner to understand the principles required to select or
design the data structure that will best solve some problem than it is to memorize a
lot of textbook implementations. Hence, I have designed this as a teaching text that
covers most standard data structures, but not all. A few data structures that are not
widely adopted are included to illustrate important principles. Some relatively new
data structures that should become widely used in the future are included.

Within an undergraduate program, this textbook is designed for use in either an
advanced lower division (sophomore or junior level) data structures course, or for
a senior level algorithms course. New material has been added in the third edition
to support its use in an algorithms course. Normally, this text would be used in a
course beyond the standard freshman level “CS2” course that often serves as the
initial introduction to data structures. Readers of this book should typically have
two semesters of the equivalent of programming experience, including at least some
exposure to C++. Readers who are already familiar with recursion will have an
advantage. Students of data structures will also benefit from having first completed
a good course in Discrete Mathematics. Nonetheless, Chapter 2 attempts to give
a reasonably complete survey of the prerequisite mathematical topics at the level
necessary to understand their use in this book. Readers may wish to refer back
to the appropriate sections as needed when encountering unfamiliar mathematical
material.



A sophomore-level class where students have only a little background in basic
data structures or analysis (that is, background equivalent to what would be had
from a traditional CS2 course) might cover Chapters 1-11 in detail, as well as se-
lected topics from Chapter 13. That is how I use the book for my own sophomore-
level class. Students with greater background might cover Chapter 1, skip most
of Chapter 2 except for reference, briefly cover Chapters 3 and 4, and then cover
chapters 5-12 in detail. Again, only certain topics from Chapter 13 might be cov-
ered, depending on the programming assignments selected by the instructor. A
senior-level algorithms course would focus on Chapters 11 and 14-17.

Chapter 13 is intended in part as a source for larger programming exercises.
I recommend that all students taking a data structures course be required to im-
plement some advanced tree structure, or another dynamic structure of comparable
difficulty such as the skip list or sparse matrix representations of Chapter 12. None
of these data structures are significantly more difficult to implement than the binary
search tree, and any of them should be within a student’s ability after completing
Chapter 5.

While I have attempted to arrange the presentation in an order that makes sense,
instructors should feel free to rearrange the topics as they see fit. The book has been
written so that once the reader has mastered Chapters 1-6, the remaining material
has relatively few dependencies. Clearly, external sorting depends on understand-
ing internal sorting and disk files. Section 6.2 on the UNION/FIND algorithm is
used in Kruskal’s Minimum-Cost Spanning Tree algorithm. Section 9.2 on self-
organizing lists mentions the buffer replacement schemes covered in Section 8.3.
Chapter 14 draws on examples from throughout the book. Section 17.2 relies on
knowledge of graphs. Otherwise, most topics depend only on material presented
earlier within the same chapter.

Most chapters end with a section entitled “Further Reading.” These sections
are not comprehensive lists of references on the topics presented. Rather, I include
books and articles that, in my opinion, may prove exceptionally informative or
entertaining to the reader. In some cases I include references to works that should
become familiar to any well-rounded computer scientist.

Use of C++: The programming examples are written in C++, but I do not wish to
discourage those unfamiliar with C++ from reading this book. I have attempted to
make the examples as clear as possible while maintaining the advantages of C++.
C++ is used here strictly as a tool to illustrate data structures concepts. In particu-
lar, I make use of C++’s support for hiding implementation details, including fea-
tures such as classes, private class members, constructors, and destructors. These
features of the language support the crucial concept of separating logical design, as
embodied in the abstract data type, from physical implementation as embodied in
the data structure.



To keep the presentation as clear as possible, some important features of C++
are avoided here. 1 deliberately minimize use of certain features commonly used
by experienced C++ programmers such as class hierarchy, inheritance, and virtual
functions. Operator and function overloading is used sparingly. C-like initialization
syntax is preferred to some of the alternatives offered by C++.

While the C++ features mentioned above have valid design rationale in real
programs, they tend to obscure rather than enlighten the principles espoused in
this book. For example, inheritance is an important tool that helps programmers
avoid duplication, and thus minimize bugs. From a pedagogical standpoint, how-
ever, inheritance often makes code examples harder to understand since it tends to
spread the description for one logical unit among several classes. Thus, my class
definitions only use inheritance where inheritance is explicitly relevant to the point
illustrated (e.g., Section 5.3.1). This does not mean that a programmer should do
likewise. Avoiding code duplication and minimizing errors are important goals.
Treat the programming examples as illustrations of data structure principles, but do
not copy them directly into your own programs.

One painful decision I had to make was whether to use templates in the code
examples. In the first edition of this book, the decision was to leave templates out
as it was felt that their syntax obscures the meaning of the code for those not famil-
iar with C++. In the years following, the use of C++ in computer science curricula
has greatly expanded. I now assume that readers of the text will be familiar with
template syntax. Thus, templates are now used extensively in the code examples.

My implementations are meant to provide concrete illustrations of data struc-
ture principles, as an aid to the textual exposition. Code examples should not be
read or used in isolation from the associated text because the bulk of each exam-
ple’s documentation is contained in the text, not the code. The code complements
the text, not the other way around. They are not meant to be a series of commercial-
quality class implementations. If you are looking for a complete implementation
of a standard data structure for use in your own code, you would do well to do an
Internet search.

For instance, the code examples provide less parameter checking than is sound
programming practice, since including such checking would obscure rather than il-
luminate the text. Some parameter checking and testing for other constraints (e.g.,
whether a value is being removed from an empty container) is included in the form
of a call to Assert. The inputs to Assert are a Boolean expression and a charac-
ter string. If this expression evaluates to false, then a message is printed and the
program terminates immediately. Terminating a program when a function receives
a bad parameter is generally considered undesirable in real programs, but is quite
adequate for understanding how a data structure is meant to operate. In real pro-
gramming applications, C++’s exception handling features should be used to deal
with input data errors. However, assertions provide a simpler mechanism for indi-



cating required conditions in a way that is both adequate for clarifying how a data
structure is meant to operate, and is easily modified into true exception handling.
See the Appendix for the implementation of Assert.

I make a distinction in the text between “C++ implementations” and “pseu-
docode.” Code labeled as a C++ implementation has actually been compiled and
tested on one or more C++ compilers. Pseudocode examples often conform closely
to C++ syntax, but typically contain one or more lines of higher-level description.
Pseudocode is used where I perceived a greater pedagogical advantage to a simpler,
but less precise, description.

Exercises and Projects: Proper implementation and analysis of data structures
cannot be learned simply by reading a book. You must practice by implementing
real programs, constantly comparing different techniques to see what really works
best in a given situation.

One of the most important aspects of a course in data structures is that it is
where students really learn to program using pointers and dynamic memory al-
location, by implementing data structures such as linked lists and trees. It is often
where students truly learn recursion. In our curriculum, this is the first course where
students do significant design, because it often requires real data structures to mo-
tivate significant design exercises. Finally, the fundamental differences between
memory-based and disk-based data access cannot be appreciated without practical
programming experience. For all of these reasons, a data structures course cannot
succeed without a significant programming component. In our department, the data
structures course is one of the most difficult programming course in the curriculum.

Students should also work problems to develop their analytical abilities. I pro-
vide over 450 exercises and suggestions for programming projects. I urge readers
to take advantage of them.

Contacting the Author and Supplementary Materials: A book such as this
is sure to contain errors and have room for improvement. I welcome bug reports
and constructive criticism. I can be reached by electronic mail via the Internet at
shaffer@vt . edu. Alternatively, comments can be mailed to

Cliff Shaffer
Department of Computer Science
Virginia Tech
Blacksburg, VA 24061
The electronic posting of this book, along with a set of lecture notes for use in
class can be obtained at®

http://www.cs.vt .edu/~shaffer/book.html.
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The code examples used in the book are available at the same site. Online Wet
pages for Virginia Tech’s sophomore-level data structures class can be found at

http://courses.cs.vt.edu/~cs3114.

This book was typeset by the author using I&TgX. The bibliography was pre-
pared using BIBTEX. The index was prepared using makeindex. The figures were
mostly drawn with X£fig. Figures 3.1 and 9.10 were partially created using Math-
ematica.
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